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Abstract: Let X be a complete, simply connected harmonic manifold of purely exponential volume
growth. This class contains all non-flat harmonic manifolds of nonpositive curvature, and in particular
all known examples of non-compact harmonic manifolds except for the flat spaces. We use the Fourier
transform from [1] to investigate the dynamics on Lp(X) for p > 2 of certain bounded linear operators
T : Lp(X) → Lp(X) which we call ”Lp-multipliers” in accordance with standard terminology. Ex-
amples of Lp-multipliers are given by the operator of convolution with an L1 radial function, or more
generally convolution with a finite radial measure. In particular elements of the heat semigroup et∆ act
as multipliers. Given 2 < p < ∞, we show that for any Lp-multiplier T which is not a scalar multiple
of the identity, there is an open set of values of ν ∈ C for which the operator 1

ν
T is chaotic on Lp(X)

in the sense of Devaney, i.e., topologically transitive and with periodic points dense. Moreover such
operators are topologically mixing. We also show that there is a constant cp > 0 such that for any
c ∈ C with Re c > cp, the action of the shifted heat semigroup ectet∆ on Lp(X) is chaotic. These results
generalize the corresponding results for rank one symmetric spaces of noncompact type and harmonic
NA groups (or Damek-Ricci spaces).
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1. Introduction

The study of chaos in linear dynamics originated in the work of Godefroy and Shapiro [2]. The
dynamics of a linear operator T on a Frechet space X is said to be chaotic (in the sense of Devaney) if
T is hypercyclic (i.e., has a dense orbit, equivalently is topologically transitive), and has a dense set of
periodic points. There is now an extensive literature on chaotic and hypercyclic operators, of which a
summary may be found in the books [3, 4]. We mention also the references [5–7], on the universality
and hyperyclicity of the heat equation solution family of operators and semigroups, in which the study
of the dynamics of these operators was initiated and continued.

In a geometric context, linear chaos has been investigated for the heat semigroup et∆ acting on the
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Lebesgue spaces Lp(X), for certain complete Riemannian manifolds X (where ∆ = div grad is the
Laplace-Beltrami operator on X). Ji and Weber considered finite volume locally symmetric spaces of
rank one in [8], where they showed that for p ∈ (1, 2) there is a constant cp ∈ R such that for c > cp

the shifted semigroup et(∆+c) is subspace chaotic on Lp(X), i.e., there is a closed, invariant subspace
such that the semigroup restricted to the subspace is chaotic. In [9], Ji and Weber investigated the
case of symmetric spaces of noncompact type, and showed that in this setting for p ∈ (2,∞) there
is a constant cp ∈ R such that for c > cp the shifted semigroup et(∆+c) is subspace chaotic on Lp(X).
In [10], Sarkar improved on the result of Ji and Weber for rank one symmetric spaces, by showing
that for the Damek-Ricci spaces (these are certain solvable Lie groups equipped with a left-invariant
metric, which include as a particular case rank one symmetric spaces of noncompact type [11]), for
p ∈ (2,∞) there is a constant cp ∈ R such that for c > cp the shifted semigroup et(∆+c) is chaotic
on Lp(X), and not just subspace chaotic. Sarkar and Pramanik later showed that the same result also
holds for higher rank symmetric spaces of noncompact type [12]. Ji and Weber also extended their
results for locally symmetric spaces to the case of higher rank in [13]. Finally, in [14], Sarkar and Ray
generalized the results on chaotic dynamics of the heat semigroup to the case of more general operators
on symmetric spaces of noncompact type known as Fourier multipliers (these include as a particular
case the operators et∆), showing that for p ∈ (2,∞), for any such operator T on Lp(X) which is not a
scalar multiple of the identity, there is a z ∈ C such that the operator zT is chaotic.

The aim of the present article is to generalize this last result to the case of a class of Riemannian
manifolds known as harmonic manifolds. These include the rank one symmetric spaces and Damek-
Ricci spaces as particular examples. A Riemannian manifold X is said to be harmonic if for any
x ∈ X, sufficiently small geodesic spheres centered at x have constant mean curvature depending only
on the radius of the sphere. Harmonic manifolds may be characterized in various equivalent ways, one
characterization being that harmonic functions on the manifold satisfy the mean-value property with
respect to geodesic spheres. The Lichnerowicz conjecture asserts that harmonic manifolds are either
flat or locally symmetric of rank one. The conjecture holds in dimension less than or equal to 5 [15–17]
and for compact simply connected harmonic manifolds [18], though it is false in general, with the
Damek-Ricci spaces giving a family of counterexamples [11]. Heber showed however that the only
complete, simply connected, homogeneous harmonic manifolds are the Euclidean spaces, rank one
symmetric spaces, and the Damek-Ricci spaces [19]. For a survey of results on general noncompact
harmonic manifolds we refer to [20].

In [21], a study of harmonic analysis on noncompact harmonic manifolds in terms of eigenfunc-
tions of the Laplace-Beltrami operator ∆ was initiated, where a Fourier transform was defined and a
Plancherel theorem and Fourier inversion formula were proved. The paper [21] however only consid-
ered harmonic manifolds of strictly negative curvature. While this class contains the rank one symmet-
ric spaces, it does not include the non-symmetric Damek-Ricci spaces, which are nonpositively curved,
but not negatively curved. In [1], the results of [21] were generalized to the larger class of harmonic
manifolds of purely exponential volume growth (see section 2 for the definition of purely exponential
volume growth). This last class does include all Damek-Ricci spaces, and in particular contains all
known examples of non-compact harmonic manifolds apart from the Euclidean spaces.

When X is a rank one symmetric space of noncompact type, an Lp-multiplier is a bounded operator
T : Lp(X)→ Lp(X) which is translation invariant. Examples of Lp-multipliers are given by convolution
on the right with radial L1-functions, or more generally convolution on the right with finite radial mea-
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sures. For a general harmonic manifold as in our case, we define in section 2.4 a notion of Lp-multiplier
as a bounded operator on Lp(X) satisfying certain natural properties. Our class of Lp-multipliers in-
cludes the operators of convolution with radial L1-functions, or more generally convolution with radial
complex measures of finite total variation (see section 2.4 for the definition of convolution with radial
functions and measures in a harmonic manifold).

The terminology ”multiplier” is motivated by the following: for p > 2, if T : Lp(X) → Lp(X)
is an Lp-multiplier, we show in section 2.4 that there exists a holomorphic function mT on a certain
horizontal strip S p ⊂ C (see section 2.2 for the definition of S p), called the symbol of T , such that for
all C∞c -functions ϕ radial around a point o ∈ X, the spherical Fourier transform of Tϕ is given by

T̂ϕ
o
(λ) = mT (λ) · ϕ̂o(λ) , λ ∈ S p

(see section 2.3 for the definition of the spherical Fourier transform of a radial function). Moreover if T
is not a scalar multiple of the identity, then we show that the function mT is a nonconstant holomorphic
function. We can now state our main theorem:

Theorem 1.1. Let X be a complete, simply connected, harmonic manifold of purely exponential volume
growth. Let 2 < p < ∞ and let T : Lp(X) → Lp(X) be an Lp-multiplier with symbol mT such that T is
not a scalar multiple of the identity. Then for all λ ∈ S p such that mT (λ) , 0, for any ν ∈ C such that
|ν| = |mT (λ)| the dynamics of the operator 1

ν
T on Lp(X) is topologically mixing with periodic points

dense, in particular the dynamics is chaotic in the sense of Devaney.

A particular case of multipliers is given by the heat semigroup et∆ on X. For a simply connected
harmonic manifold, the heat kernel Ht(x, y) is radial, i.e., there exists an L1 function ht radial around
a basepoint o ∈ X such that Ht(x, y) = (τxht)(y) (see [18]; here τxht denotes the x-translate of ht as
defined in section 2.4). The action of et∆ is thus given by convolution with the radial L1 function ht, so
et∆ is an Lp-multiplier for all p ∈ [1,+∞]. We determine the symbol of et∆ and then apply the previous
theorem to obtain the following corollary:

Corollary 1.2. Let X be a complete, simply connected, harmonic manifold of purely exponential vol-
ume growth, and let 2 < p < ∞, 1 < q < 2 be such that 1/p+ 1/q = 1. There exists a constant cp =

4ρ2

pq

such that the action of the shifted heat semigroup (ectet∆)t>0 on Lp(X) is chaotic in the sense of Devaney
for all c ∈ C with Re c > cp. In fact for any t0 > 0, the operator ect0et0∆ on Lp(X) is chaotic for all
c ∈ C with Re c > cp.

In section 2 we recall some basic facts about eigenfunctions of the Laplacian, the Fourier transform,
and convolution on harmonic manifolds, show that convolution with a radial measure of finite variation
is an Lp-multiplier, and prove existence of the symbol of a multiplier. In section 3 we prove the main
theorem. We also prove the corollary by determining the symbol of the multiplier et∆.

2. Preliminaries

In this section we briefly recall the facts about the Fourier transform on harmonic manifolds which
we will require. For details the reader is referred to [1]. Throughout, X will denote a complete, simply
connected harmonic n-manifold of purely exponential volume growth. Here by purely exponential
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volume growth we mean that there are constants C > 1, h > 0 such that the volumes of geodesic balls
B(x, r) satisfy

1
C

ehr ≤ vol(B(x, r)) ≤ Cehr

for all x ∈ X, r > 0. We fix a basepoint o ∈ X.

2.1. Boundary, visibility measures and Busemann functions

In [22], it was shown that the hypotheses on X imply that X is a Gromov hyperbolic space, and so
we have a boundary at infinity ∂X of the space X, defined as the set of equivalence classes of geodesic
rays γ : [0,∞) → X, where two rays are equivalent if they stay at bounded distance from each other.
We denote the equivalence class of a geodesic ray γ by γ(∞) ∈ ∂X. There is a natural topology on
X := X ∪ ∂X called the cone topology for which X becomes a compactification of X (for details on
Gromov hyperbolic spaces we refer to Chapter III.H of [23]).

Given a point x ∈ X, let λx be normalized Lebesgue measure on the unit tangent sphere T 1
x X,

i.e., the unique probability measure on T 1
x X invariant under the orthogonal group of the tangent space

TxX. For v ∈ T 1
x X, let γv : [0,∞) → X be the unique geodesic ray with initial velocity v. Then we

have a homeomorphism px : T 1
x X → ∂X, v 7→ γv(∞). The visibility measure on ∂X (with respect

to the basepoint x) is defined to be the push-forward (px)∗λx of λx under the map px; for notational
convenience, we will however denote the visibility measure on ∂X by the same symbol λx.

Given a point x ∈ X and a boundary point ξ ∈ ∂X, the Busemann function at ξ based at x is defined
by

Bξ,x(y) := lim
t→∞

(d(y, γ(t)) − d(x, γ(t)))

where γ : [0,∞) → X is any geodesic ray such that γ(∞) = ξ (it is shown in [1] that the above limit
exists and is independent of the choice of the ray γ). The Busemann functions Bξ,x are C2 convex
functions, and their level sets are called horospheres based at ξ.

2.2. Radial and horospherical eigenfunctions of the Laplacian

Let ∆ denote the Laplace-Beltrami operator of X, or Laplacian. As X is harmonic, X is also asymp-
totically harmonic, i.e., all horospheres have constant mean curvature, so there is a constant h such that
∆Bξ,x ≡ h for all ξ ∈ ∂X, x ∈ X. From [1], we know that in fact h > 0. We let

ρ :=
1
2

h.

A function f on X is called radial around a point x ∈ X if f is constant on geodesic spheres centered
at x. For any x ∈ X and λ ∈ C, there is a unique eigenfunction ϕλ,x of ∆ for the eigenvalue −(λ2 + ρ2)
which is radial around x and satisfies ϕλ,x(x) = 1. Moreover for any fixed y ∈ Y , λ 7→ ϕλ,x(y) is an
entire function of λ. The functions ϕλ,x are real-valued for λ ∈ R∪ iR, and bounded by 1 for | Im λ| ≤ ρ.
Given p > 2, for all λ in the strip S p := {| Im λ| < (1 − 2/p)ρ}, the function ϕλ,x is in Lp(X).

For any x ∈ X, ξ ∈ ∂X and λ ∈ C, the function e(iλ−ρ)Bξ,x is an eigenfunction of ∆ for the eigenvalue
−(λ2 + ρ2). Note that this eigenfunction is constant on horospheres based at ξ.
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2.3. The spherical and Helgason Fourier transforms

Let f ∈ L1(X). Given a point x ∈ X, the spherical Fourier transform of f based at x is the function
f̂ x on R defined by pairing f with the radial eigenfunctions ϕλ,x:

f̂ x(λ) :=
∫

X
f (y)ϕλ,x(y)dvol(y) , λ ∈ R.

There exists a function c on C − {0} satisfying, for some constants C,K > 0, the estimates

1
C
|λ| ≤ |c(λ)|−1 ≤ C|λ|, 0 < |λ| ≤ K,

1
C
|λ|(n−1)/2 ≤ |c(λ)|−1 ≤ C|λ|(n−1)/2, |λ| ≥ K,

such that the following inversion formula for the spherical Fourier transform from [1] holds:

Theorem 2.1. Let f ∈ C∞c (X) be radial around x. Then

f (y) =
∫ ∞

0
f̂ x(λ)ϕλ,x(y)|c(λ)|−2dλ

for all y ∈ X.

Given 1 ≤ q < 2, if p > 2 is the conjugate exponent such that 1/p + 1/q = 1, then using the fact
that the functions ϕλ,o are in Lp(X) for λ in the strip S p, we have the following proposition from [1]:

Proposition 2.2. Let 1 ≤ q < 2 and p > 2 be such that 1/p + 1/q = 1. Then for any x ∈ X and
f ∈ Lq(X), the spherical Fourier transform of f based at x is well-defined and extends to a holomorphic
function on the strip S p.

Let f ∈ C∞c (X). Given x ∈ X, the Helgason Fourier transform of f based at x is the function
f̃ x : C × ∂X → C defined by

f̃ x(λ, ξ) :=
∫

X
f (y)e(−iλ−ρ)Bξ,x(y)dvol(y) , λ ∈ C, ξ ∈ ∂X

We have the following relation between the Helgason Fourier transforms based at two different
basepoints o, x ∈ X:

f̃ x(λ, ξ) = e(iλ+ρ)Bξ,o(x) f̃ o(λ, ξ) (2.1)

If f is radial around the point x then the Helgason Fourier transform reduces to the spherical Fourier
transform,

f̃ x(λ, ξ) = f̂ x(λ) , λ ∈ C, ξ ∈ ∂X

From [1] we have the following inversion formula for the Helgason Fourier transform:

Theorem 2.3. Let x ∈ X and let f ∈ C∞c (X). Then

f (y) =
∫ ∞

0

∫
∂X

f̃ x(λ, ξ)e(iλ−ρ)Bξ,x(y)dλx(ξ)|c(λ)|−2dλ

for all y ∈ X.
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2.4. Convolution operators and Lp multipliers

Convolution with radial functions in harmonic manifolds was first considered in [18]. We describe
below this notion of convolution.

For a point x ∈ X, let dx denote the distance function from the point x, defined by dx(y) := d(x, y), y ∈
X.

Given a function f on X radial around a point x, let u be a function on [0,∞) such that f = u ◦ dx.
Given a point y in X, the y-translate of f is the function τy f radial around y defined by τy f := u ◦ dy. It
follows from the fact that X is harmonic that ||τy f ||p = || f ||p for all p ∈ [1,+∞]. Moreover if f is also
in L1, then the spherical Fourier transforms satisfy

τ̂y f
y
(λ) = f̂ x(λ)

We note also from [1] that there is an even C∞ function on R which we denote by ϕλ such that ϕλ,x =
ϕλ ◦ dx. Thus the x-translate of the eigenfunction ϕλ,o radial around o is the eigenfunction ϕλ,x radial
around x, τxϕλ,o = ϕλ,x.

For simplicity, in the sequel, unless otherwise mentioned, by ”radial function” we will mean a
function which is radial around the basepoint o. Likewise, by ”spherical Fourier transform” we will
mean the spherical Fourier transform based at o, unless otherwise mentioned.

Given f , g ∈ L1(X) with g radial, the convolution of f with g is the function f ∗ g on X defined by

( f ∗ g)(x) =
∫

X
f (y)τxg(y)dvol(y)

The integral above converges for a.e. x, and satisfies

|| f ∗ g||1 ≤ || f ||1||g||1

We note that if f ∈ L∞(X) and g ∈ L1(X) with g radial, then the integral defining ( f ∗ g)(x) converges
for all x and satisfies

|| f ∗ g||∞ ≤ || f ||∞||g||1

It follows by interpolation that for any p ∈ [1,+∞], convolution with a radial L1 function g defines a
bounded linear operator on Lp(X) satisfying

|| f ∗ g||p ≤ || f ||p||g||1

for all f ∈ Lp(X).
A standard argument using the above inequality and density of C∞c (X) in Lp(X) gives that if {ϕn} is

an approximate identity, i.e., ϕn ≥ 0,
∫

X
ϕndvol = 1 and

∫
B(o,r)

ϕndvol → 1 for any r > 0, then for any
f ∈ Lp(X),

|| f ∗ ϕn − f ||p → 0

as n→ ∞.
In [1] it is shown that for ϕ, ψ ∈ C∞c (X) with ψ radial, the Helgason Fourier transform of the

convolution ϕ ∗ ψ satisfies

ϕ̃ ∗ ψ
o
(λ, ξ) = ϕ̃o(λ, ξ)ψ̂o(λ) , λ ∈ C, ξ ∈ ∂X
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In particular, if both ϕ, ψ are radial, then

ϕ̂ ∗ ψ
o
(λ) = ϕ̂o(λ)ψ̂o(λ)

We also have from [1] that the radial L1 functions form a commutative Banach algebra under con-
volution. It follows, using density of radial C∞c -functions in radial Lp functions, that for a radial L1

function g the convolution operator Tg : f 7→ f ∗ g on Lp(X) preserves the subspace of radial Lp

functions and satisfies, for all radial C∞c -functions ϕ, ψ,

Tgϕ ∗ ψ = ϕ ∗ Tgψ

In fact for any x ∈ X the convolution operator Tg preserves the subspace of Lp functions radial
around x. This is a consequence of the following lemma:

Lemma 2.4. Let ϕ, ψ be radial C∞c -functions. Then for any x ∈ X,

τxϕ ∗ ψ = τx(ϕ ∗ ψ)

Proof: We compute Helgason Fourier transforms:

˜τxϕ ∗ ψ
o
(λ, ξ) = τ̃xϕ

o
(λ, ξ)ψ̂o(λ)

= e−(iλ+ρ)Bξ,o(x)τ̃xϕ
x
(λ, ξ)ψ̂o(λ)

= e−(iλ+ρ)Bξ,o(x)τ̂xϕ
x
(λ)ψ̂o(λ)

= e−(iλ+ρ)Bξ,o(x)ϕ̂o(λ)ψ̂o(λ)

= e−(iλ+ρ)Bξ,o(x)ϕ̂ ∗ ψ
o
(λ)

= e−(iλ+ρ)Bξ,o(x) ̂τx(ϕ ∗ ψ)
x
(λ)

= e−(iλ+ρ)Bξ,o(x) ˜τx(ϕ ∗ ψ)
x
(λ, ξ)

= ˜τx(ϕ ∗ ψ)
o
(λ, ξ)

It follows from the Fourier inversion formula (Theorem 2.3) that τxϕ ∗ ψ = τx(ϕ ∗ ψ). ⋄
Now given g a radial L1 function and ϕ ∈ C∞c (X), let {ψn} be a sequence of radial C∞c -functions

converging to g in L1. Given x ∈ X, since ϕ and τxϕ are in L∞, it follows that ϕ ∗ ψn and τxϕ ∗ ψn

converge pointwise to ϕ ∗ g and τxϕ ∗ g respectively, so τx(ϕ ∗ ψn) converges pointwise to τx(ϕ ∗ g).
Applying the previous Lemma, we obtain τxϕ∗g = τx(ϕ∗g). Thus the convolution operator Tg satisfies

Tgτxϕ = τxTgϕ

for all radial C∞c functions ϕ and all x ∈ X.
This leads us to the following definition:

Definition 2.5. (Lp-multipliers) For p ∈ [1,+∞], an Lp-multiplier is a bounded operator T : Lp(X)→
Lp(X) such that:
(1) T preserves the subspace of radial Lp functions.
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(2) For all radial C∞c -functions ϕ, ψ we have

Tϕ ∗ ψ = ϕ ∗ Tψ

(3) For all radial C∞c -functions ϕ and all x ∈ X we have

Tτxϕ = τxTϕ

Thus convolution operators given by radial L1 functions are Lp multipliers for all p ∈ [1,+∞]. For
more general examples of Lp-multipliers we can consider convolution with radial complex measures µ
of finite total variation, which is defined as follows:

We say that a complex measure µ on X is radial around o if there exists a complex measure µ̃ on
[0,∞) such that for any continuous bounded function f on X we have∫

X
f (x)dµ(x) =

∫ ∞

0

(∫
S (o,r)

f (y)dλo,r(y)
)

dµ̃(r)

where S (o, r) denotes the geodesic sphere of radius r around o and λo,r denotes the volume measure on
S (o, r) induced from the metric on X. For x ∈ X, the x-translate of such a measure µ is the measure
τxµ radial around x defined by requiring that∫

X
f (y)dτxµ(y) =

∫ ∞

0

(∫
S (x,r)

f (y)dλx,r(y)
)

dµ̃(r)

for all continuous bounded functions f on X (where S (x, r) is the geodesic sphere of radius r around x
and λx,r is the volume measure on S (x, r)).

For an L1 function f on X and a radial complex measure µ on X of finite variation, the convolution
f ∗ µ is the function on X defined by

( f ∗ µ)(x) :=
∫

X
f (y)dτxµ(y)

We note that any L1 function g which is radial around o gives a complex measure µ = gdvol which is
radial around o and satisfies ||µ|| = ||g||1 (where ||µ|| is the total variation norm of µ), and f ∗ µ = f ∗ g,
so convolution with finite variation radial measures generalizes convolution with L1 radial functions.

Given a finite variation radial measure µ, we can approximate µ in the weak-* topology by measures
gndvol where gn’s are radial L1 functions such that ||gn||1 → ||µ||, then for any f ∈ C∞c (X) we have
f ∗ gn → f ∗ µ pointwise, and an application of Fatou’s Lemma then leads to the inequality

|| f ∗ µ||1 ≤ || f ||1||µ||

valid for all f ∈ C∞c (X) and all finite variation radial measures µ. The inequality then continues to hold
for all f ∈ L1(X) by density of C∞c (X) in L1(X).

Moreover for f ∈ L∞(X) and µ a finite variation radial measure, it is straightforward to see that the
integral defining f ∗ µ exists for all x and satisfies

|| f ∗ µ||∞ ≤ || f ||∞||µ||
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Thus by interpolation for any p ∈ [1,+∞], convolution with a finite variation radial measure µ defines
a bounded operator on Lp(X) satisfying

|| f ∗ µ||p ≤ || f ||p||µ||

for all f ∈ Lp(X).

Proposition 2.6. Let µ be a radial complex measure of finite total variation. Then for any p ∈ [1,+∞],
the operator Tµ : f 7→ f ∗ µ is an Lp multiplier.

Proof: Fix p ∈ [1,∞]. Let {gn} be a sequence of radial L1 functions such that gndvol → µ in the
weak-* topology and such that ||gn||1 → ||µ||. Then for any radial C∞c -function ϕ, the functions ϕ ∗ gn

are radial and converge to ϕ ∗ µ pointwise, so ϕ ∗ µ is radial. It follows that Tµ preserves the subspace
of radial Lp functions.

Let ϕ, ψ be radial C∞c -functions. Then

||ϕ ∗ gn||∞ ≤ ||ϕ||∞||gn||1 ≤ C||ϕ||∞

for some constant C > 0, so for any x ∈ X the functions ϕ ∗ gn are uniformly bounded on the support of
τxψ, and converge to ϕ ∗ µ pointwise, so it follows from dominated convergence that (ϕ ∗ gn) ∗ ψ(x)→
(ϕ ∗ µ) ∗ ψ(x) for all x ∈ X. A similar argument gives that ϕ ∗ (ψ ∗ gn)(x)→ ϕ ∗ (ψ ∗ µ)(x) for all x ∈ X.
Since (ϕ ∗ gn) ∗ ψ = ϕ ∗ (ψ ∗ gn) for all n, it follows that (ϕ ∗ µ) ∗ ψ = ϕ ∗ (ψ ∗ µ).

Let ϕ be a radial C∞c -function and let x ∈ X. Then ϕ ∗ gn and τxϕ ∗ gn converge to ϕ ∗ µ and τxϕ ∗ µ

respectively, so τx(ϕ ∗ gn) converges pointwise to τx(ϕ ∗ µ). Since τxϕ ∗ gn = τx(ϕ ∗ gn) for all n, it
follows that τxϕ ∗ µ = τx(ϕ ∗ µ). ⋄

Let 1 ≤ q < 2 and p > 2 such that 1/p + 1/q = 1. Let f be a radial Lq function, then the spherical
Fourier transform f̂ is holomorphic in the strip S p, and it turns out that for any radial C∞c -function ψ,
we have

f̂ ∗ ψ(λ) = f̂ (λ)ψ̂(λ) , λ ∈ S p

This can be seen as follows: let {ϕn} be a sequence of radial C∞c -functions converging to f in Lq(X),
then since ϕλ,o ∈ Lp(X) for λ ∈ S p, it follows from Holder’s inequality that ϕ̂n(λ) → f̂ (λ) for λ ∈ S p.
Moreover, since ψ ∈ L1(X), ϕn ∗ ψ converges to f ∗ ψ in Lq(X), so as before ϕ̂n ∗ ψ(λ) → f̂ ∗ ψ(λ) for
λ ∈ S p. The desired equality follows by passing to the limit in the equality ϕ̂n ∗ ψ(λ) = ϕ̂n(λ)ψ̂(λ).

Other examples of Lp-multipliers can be obtained by using the Kunze-Stein phenomenon proved
in [1]. This asserts that if 1 ≤ q < 2, then there is a constant Cq > 0 such that for all C∞c -functions f , g
with g radial, we have

|| f ∗ g||2 ≤ Cq|| f ||2||g||q.

Combining this with the trivial estimate

|| f ∗ g||∞ ≤ || f ||∞||g||1,

it follows from interpolation that for any p > 2, if 1 ≤ r < 2 is such that 1/r < 1 + 1/p, then there is a
constant Cp > 0 such that

|| f ∗ g||p ≤ Cp|| f ||p||g||r.

The above inequality then implies that convolution with a radial Lr-function g defines an Lp-multiplier
Tg : Lp(X)→ Lp(X).

The following proposition justifies the use of the term ”multiplier”:
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Proposition 2.7. Let 1 ≤ q < 2 and p > 2 be such that 1/p + 1/q = 1. Let T : Lp(X) → Lp(X) be
an Lp multiplier. Then there exists a holomorphic function mT on the strip S p such that, for any radial
C∞c -function ϕ, we have Tϕ ∈ Lq(X), and

T̂ϕ(λ) = mT (λ)ϕ̂(λ) , λ ∈ S p

Proof: We first show that given a radial C∞c function ϕ, Tϕ ∈ Lq(X). For any radial C∞c -function ψ, we
have ∣∣∣∣∣∫

X
Tϕ(x)ψ(x)dvol(x)

∣∣∣∣∣ = |Tϕ ∗ ψ(o)|

= |ϕ ∗ Tψ(o)|

=

∣∣∣∣∣∫
X
ϕ(x)Tψ(x)dvol(x)

∣∣∣∣∣
≤ ||ϕ||q||Tψ||p
≤ (||T ||||ϕ||q)||ψ||p

Since Tϕ is radial and the above inequality holds for all radial C∞c -functions ψ, it follows that ||Tϕ||q ≤
||T ||||ϕ||q < +∞.

Thus for any radial C∞c -function ϕ which is not identically zero, T̂ϕ is a holomorphic function in
the strip S p, and we can define a meromorphic function mϕ on S p by

mϕ :=
T̂ϕ

ϕ̂

If ψ is another radial C∞c -function which is not identically zero, then the equality Tϕ ∗ ψ = ϕ ∗ Tψ
implies T̂ϕψ̂ = ϕ̂T̂ψ on S p and hence mϕ = mψ. Thus the meromorphic function mϕ is independent of
the choice of ϕ, and we may denote it by mT .

It suffices to show that mT is in fact holomorphic in S p. For this it is enough to show that given any
λ0 ∈ S p, there is a radial C∞c -function ϕ such that ϕ̂(λ0) , 0, since then mT = T̂ϕ/ϕ̂will be holomorphic
near λ0. If ϕ̂(λ0) = 0 for all radial C∞c -functions ϕ, then∫

X
ϕ(x)ϕλ0,o(x)dvol(x) = 0

for all such ϕ, and since ϕλ0,o is radial this implies that ϕλ0,o ≡ 0, a contradiction. Thus mT is holomor-
phic in S p and by definition satisfies T̂ϕ = mT ϕ̂ for all radial C∞c -functions ϕ. ⋄
Remark. If for 1 ≤ q < 2 we have an Lq-multiplier T , then by definition Tϕ ∈ Lq for ϕ a radial
C∞c -function, and then the proof of the above proposition applies to show that for any Lq-multiplier
T there is a function mT holomorphic in the strip S p such that T̂ϕ(λ) = mT (λ)ϕ̂(λ) for λ ∈ S p and ϕ
a radial C∞c -function. Thus the conclusion of the proposition holds in fact for all Lp-multipliers with
p , 2.

We will call the holomorphic function mT given by the above proposition the symbol of the Lp-
multiplier T . Note that if T is given by convolution with a radial L1-function g, then the symbol mT

equals the spherical Fourier transform ĝo of g, since ϕ̂ ∗ g
o
= ϕ̂oĝo for all radial C∞c -functions ϕ.
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Proposition 2.8. Let 1 ≤ q < 2 and p > 2 be such that 1/p + 1/q = 1. Let T : Lp(X) → Lp(X) be an
Lp-multiplier. Then for all λ ∈ S p and x ∈ X, we have

Tϕλ,x = mT (λ)ϕλ,x

Proof: Let λ ∈ S p and let {ϕn} be a sequence of radial C∞c -functions converging to ϕλ,o in Lp(X).
Then Tϕn converges to Tϕλ,o in Lp(X). For any radial C∞c -function ψ, since ψ ∈ Lq(X) it follows from
Holder’s inequality that ∫

X
Tϕn(x)ψ(x)dvol(x)→

∫
X

Tϕλ,o(x)ψ(x)dvol(x)

as n → ∞. On the other hand, again using Holder’s inequality and the fact that ϕn converges to ϕλ,o in
Lp(X), we have ∫

X
Tϕn(x)ψ(x)dvol(x) = Tϕn ∗ ψ(o)

= ϕn ∗ Tψ(o)

=

∫
X
ϕn(x)Tψ(x)dvol(x)

→

∫
X
ϕλ,oTψ(x)dvol(x)

= T̂ψ(λ)

= mT (λ)ψ̂(λ)

= mT (λ)
∫

X
ϕλ,o(x)ψ(x)dvol(x)

Thus ∫
X

Tϕλ,o(x)ψ(x)dvol(x) = mT (λ)
∫

X
ϕλ,o(x)ψ(x)dvol(x)

for all radial C∞c -functions ψ, so it follows that Tϕλ,o = mT (λ)ϕλ,o.

Now given x ∈ X and λ ∈ S p, the functions τxϕn converge to ϕλ,x in Lp(X), and so

Tϕλ,x = lim
n→∞

Tτxϕn

= lim
n→∞

τxTϕn

= τxTϕλ,o
= mT (λ)τxϕλ,o

= mT (λ)ϕλ,x

⋄
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3. Dynamics of Lp multipliers

3.1. General multipliers

We show in this section that the dynamics of appropriately scaled Lp-multipliers is chaotic in the
sense of Devaney if 2 < p < ∞. The following lemma is the key to the results which follow:

Lemma 3.1. Let 1 < q < 2 and 2 < p < ∞ be such that 1/p + 1/q = 1. Let K ⊂ S p be a subset such
that K has a limit point in S p. Then the subspace

VK := S pan{τxϕλ,o|x ∈ X, λ ∈ K}

is dense in Lp(X).

Proof: It suffices to show that if f ∈ Lq(X) is such that
∫

X
f (y)τxϕλ,o(y)dvol(y) = 0 for all x ∈ X, λ ∈ K,

then f = 0. Given such an f ∈ Lq(X), the hypothesis on f means that for any x ∈ X, the spherical
Fourier transform of f based at x vanishes on the set K. By Proposition 2.2, f̂ x is holomorphic in S p

and K has a limit point in S p, thus f̂ x vanishes identically in S p, in particular on R. Thus for all x ∈ X
and λ ∈ R, we have

( f ∗ ϕλ,o)(x) =
∫

X
f (y)ϕλ,x(y)dvol(y) = f̂ x(λ) = 0.

Let ϕ be a radial C∞c -function, then by the Fourier inversion formula (Theorem 2.1) we have

ϕ(y) =
∫ ∞

0
ϕ̂(λ)ϕλ,o(y)|c(λ)|−2dλ

for all y ∈ X, so it follows from Fubini’s theorem that

( f ∗ ϕ)(x) =
∫ ∞

0
( f ∗ ϕλ,o)(x)ϕ̂(λ)|c(λ)|−2dλ = 0

for all x ∈ X. Thus f ∗ ϕ = 0 for all radial C∞c -functions ϕ. Now letting {ϕn} be a sequence of radial
C∞c -functions which forms an approximate identity, we have f ∗ ϕn = 0 for all n, and f ∗ ϕn converges
to f in Lq(X), thus f = 0. ⋄

We will also need the following lemma:

Lemma 3.2. Let 2 < p < ∞ and let T : Lp(X)→ Lp(X) be an Lp-multiplier. Suppose T is not a scalar
multiple of the identity. Then the symbol mT is a nonconstant holomorphic function in the strip S p.

Proof: Suppose to the contrary that mT ≡ C for some constant C ∈ C. By Proposition 2.8 we then have
Tϕλ,x = Cϕλ,x for all λ ∈ S p and x ∈ X. Thus T = CId on the subspace V = S pan{ϕλ,x|λ ∈ S p, x ∈ X},
which is dense by the previous Lemma, hence T = CId on Lp(X), a contradiction. ⋄

The main tool to prove that the dynamics of Lp multipliers is chaotic is the following criterion of
Godefroy-Shapiro (see [4], Theorem 3.1):

Theorem 3.3. (Godefroy-Shapiro criterion) Let X be a separable Banach space and let T : X → X
be a bounded operator. Suppose the subspaces X+, X− defined by

X+ = S pan{v ∈ X|Tv = λv for some λ ∈ C such that |λ| < 1}
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X− = S pan{v ∈ X|Tv = λv for some λ ∈ C such that |λ| > 1}

are dense in X. Then the dynamics of T on X is topologically mixing, i.e., for any two nonempty open
sets U,V ⊂ X, there exists N ≥ 1 such that T nU ∩ V , ∅ for all n ≥ N.

We can now prove Theorem 1.1:
Proof of Theorem 1.1: Let λ0 ∈ S p be such that mT (λ0) , 0, let ν ∈ C be such that |ν| = |mT (λ)| and
set α = mT (λ)/ν ∈ S 1. Let D0 = {z ∈ C||z| < 1} and D∞ = {z ∈ C|z| > 1}. Let U ⊂ S p be an open
neighbourhood of λ0, then since α ∈ S 1 and by Lemma 3.2 mT is a nonconstant holomorphic function,
there are nonempty open subsets U+,U− ⊂ U such that {mT (λ)/ν|λ ∈ U+} ⊂ D0 and {mT (λ)/ν|λ ∈
U−} ⊂ D∞. By Proposition 2.8, for all λ ∈ U and x ∈ X, the function ϕλ,x ∈ Lp(X) is an eigenfunction
of the operator 1

ν
T with eigenvalue mT (λ)/ν. By Lemma 3.1, the subspaces V+ = {ϕλ,x|λ ∈ U+, x ∈ X}

and V− = {ϕλ,x|λ ∈ U−, x ∈ X} are dense in Lp(X). It follows from the Godfrey-Shapiro criterion that
the dynamics of 1

ν
T is topologically mixing.

It remains to show that the periodic points of 1
ν
T are dense in Lp(X). Since mT is a nonconstant

holomorphic function and mT (λ0)/ν ∈ S 1, we can choose sequences {λn} ⊂ U and {pn/qn} ⊂ Q

such that mT (λn)/ν = e2πipn/qn and λn → λ0 as n → ∞. Then by Lemma 3.1, the subspace V =
S pan{ϕλn,x|x ∈ X, n ≥ 1} is dense in Lp(X). It thus suffices to show that each element of V is a periodic
point of 1

ν
T . Any element ϕ ∈ V can be written as ϕ =

∑N
j=1 a jϕλ j,x j for some N ≥ 1, a1, . . . , aN ∈ C

and x1, . . . , xN ∈ X. Since ϕλ j,x j is an eigenvector of 1
ν
T with eigenvalue e2πip j/q j , letting q =

∏N
j=1 q j it

follows that ( 1
ν
T )qϕλ j,x j = ϕλ j,x j for all j, thus ( 1

ν
T )qϕ = ϕ and ϕ is a periodic point of 1

ν
T . ⋄

3.2. The heat semigroup

We recall some basic facts about the heat semigroup and heat kernel on a complete Riemannian
manifold X. Denote by ∆X = div grad the Laplacian acting on C∞c (X) ⊂ L2(X), then this is an
essentially self-adjoint operator, and so its closure ∆X,2 is a self-adjoint operator on L2(X). Since ∆X,2

is negative, it generates a semigroup et∆X,2 on L2(X) by the spectral theorem for unbounded self-adjoint
operators. The operators et∆X,2 are positive, leave L1(X)∩L∞(X) ⊂ L2(X) invariant, and may be extended
to a positive contraction semigroup et∆X,p on Lp(X) for any p ∈ [1,+∞], which is strongly continuous
for p ∈ [1,+∞) [24]. In the sequel we will write simply et∆ for the semigroup et∆X,p on Lp(X). From [25]
we have the following:

There exists a C∞ function Ht(x, y) on R+ × X × X, the heat kernel, such that for all t > 0 and x ∈ X
the function Ht(x, .) is positive and in Lp for all p ∈ [1,+∞], and for all f ∈ Lp(X),

et∆ f (x) =
∫

X
f (y)Ht(x, y)dvol(y)

and
∂

∂t
et∆ f (x) = ∆et∆ f (x).

Moreover, it is shown in [18] that for a X a simply connected harmonic manifold, the heat kernel is
radial, i.e., there exists a function ht radial around the basepoint o such that Ht(x, y) = (τxht)(y). Thus
the action of the heat semigroup on Lp(X) is given in our case by convolution with the radial L1 function
ht,

et∆ f = f ∗ ht

Electronic Research Archive Volume 30, Issue 8, 3042–3057.



3055

for all f ∈ Lp(X), so et∆ is an Lp-multiplier for all p ∈ [1,+∞]. The symbol of the multiplier et∆ is
given by the following proposition:

Proposition 3.4. For any t > 0, the spherical Fourier transform of the heat kernel is given by

ĥt
o
(λ) = e−t(λ2+ρ2) , λ ∈ S∞.

Proof: Let p ∈ (2,∞) and let λ ∈ S p. Then ϕλ,o ∈ Lp(X), and using the fact that the operators ∆, et∆ on
Lp(X) commute and ∆ϕλ,o = −(λ2 + ρ2)ϕλ,o, we have

∂

∂t
et∆ϕλ,o = ∆et∆ϕλ,o

= et∆∆ϕλ,o

= −(λ2 + ρ2)et∆ϕλ,o.

Thus t 7→ et∆ϕλ,o ∈ Lp(X) satisfies the first order linear ODE

∂

∂t
et∆ϕλ,o = −(λ2 + ρ2)et∆ϕλ,o

and et∆ϕλ,o → ϕλ,o in Lp(X) as t → 0, hence

et∆ϕλ,o = e−t(λ2+ρ2)ϕλ,o

for all t > 0. Evaluating both sides above at the point o gives

ĥt
o
(λ) =

∫
X
ϕλ,o(x)ht(x)dvol(x)

= et∆ϕλ,o(o)

= e−t(λ2+ρ2)ϕλ,o(o)

= e−t(λ2+ρ2).

⋄

We can now prove the result on the chaotic dynamics of shifted heat semigroups:
Proof of Corollary 1.2: Given 2 < p < ∞ and 1 < q < 2 such that 1/p + 1/q = 1, let cp = 4ρ2/(pq).
Let c ∈ C be such that Re c > cp, and let t0 > 0. Let T = et0∆ and ν = e−ct0 . By Proposition 3.4 above,
the symbol of T is given by mT (λ) = e−t0(λ2+ρ2). In order to show that the operator ect0et0∆ = 1

ν
T is

chaotic, it suffices by Theorem 1.1 to show that there exists λ ∈ S p such that |ν| = |mT (λ)|.
Letting λ = s + it ∈ S p, the equality |ν| = |mT (λ)| is equivalent to

s2 − t2 + ρ2 = Re c.

Let t be such that t = (1 − 2/p)ρ − ϵ where ϵ > 0 is small, then we have

Re c + t2 − ρ2 = (Re c − cp) + cp + ((1 − 2/p)2 − 1)ρ2 + O(ϵ)
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= (Re c − cp) + (4(1/p)(1 − 1/p) − 4/p + 4/p2)ρ2 + O(ϵ)
= (Re c − cp) + O(ϵ)
> 0

for ϵ small enough since Re c − cp > 0. Thus we can choose t with 0 < t < (1 − 2/p)ρ such that
Re c + t2 − ρ2 > 0, so we can then choose s ∈ R such that s2 = Re c + t2 − ρ2, or s2 − t2 + ρ2 = Re c, as
required. ⋄
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