Research article

Normalized ground states to the nonlinear Choquard equations with local perturbations

  • Received: 12 December 2023 Revised: 26 January 2024 Accepted: 31 January 2024 Published: 19 February 2024
  • In this paper, we considered the existence of ground state solutions to the following Choquard equation

    $ \begin{eqnarray*} \left\{ \begin{aligned} &-\Delta u = \lambda u + (I_{\alpha}\ast F(u))f(u) + \mu|u|^{q-2}u \hskip0.5cm \mbox{in} \hskip0.2cm\mathbb{R}^{N}, \\ & \int\limits_{\mathbb{R}^{N}}|u|^{2}dx = a >0, \end{aligned} \right. \end{eqnarray*} $

    where $ N \geq 3 $, $ I_{\alpha} $ is the Riesz potential of order $ \alpha \in (0, N) $, $ 2 < q \leq 2+ \frac{4}{N} $, $ \mu > 0 $ and $ \lambda \in \mathbb{R} $ is a Lagrange multiplier. Under general assumptions on $ F\in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R}) $, for a $ L^{2} $-subcritical and $ L^{2} $-critical of perturbation $ \mu|u|^{q-2}u $, we established several existence or nonexistence results about the normalized ground state solutions.

    Citation: Xudong Shang. Normalized ground states to the nonlinear Choquard equations with local perturbations[J]. Electronic Research Archive, 2024, 32(3): 1551-1573. doi: 10.3934/era.2024071

    Related Papers:

  • In this paper, we considered the existence of ground state solutions to the following Choquard equation

    $ \begin{eqnarray*} \left\{ \begin{aligned} &-\Delta u = \lambda u + (I_{\alpha}\ast F(u))f(u) + \mu|u|^{q-2}u \hskip0.5cm \mbox{in} \hskip0.2cm\mathbb{R}^{N}, \\ & \int\limits_{\mathbb{R}^{N}}|u|^{2}dx = a >0, \end{aligned} \right. \end{eqnarray*} $

    where $ N \geq 3 $, $ I_{\alpha} $ is the Riesz potential of order $ \alpha \in (0, N) $, $ 2 < q \leq 2+ \frac{4}{N} $, $ \mu > 0 $ and $ \lambda \in \mathbb{R} $ is a Lagrange multiplier. Under general assumptions on $ F\in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R}) $, for a $ L^{2} $-subcritical and $ L^{2} $-critical of perturbation $ \mu|u|^{q-2}u $, we established several existence or nonexistence results about the normalized ground state solutions.



    加载中


    [1] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. https://doi.org/10.1515/9783112649305
    [2] E. H. Lieb, Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation, in Inequalities (eds. M, Loss and M. B. Ruskai), Springer, 2002. https://doi.org/10.1007/978-3-642-55925-9-37
    [3] K. R. W. Jones, Newtonian Quantum Gravity, Aust. J. Phys., 48 (1995), 1055–1082. https://doi.org/10.1071/ph951055
    [4] R. Penrose, On gravity's role in quantum state reduction, Gen. Relativ. Gravitatation, 28 (1996), 581–600. https://doi.org/10.1007/BF02105068 doi: 10.1007/BF02105068
    [5] P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072. https://doi.org/10.1016/0362-546X(80)90016-4 doi: 10.1016/0362-546X(80)90016-4
    [6] V. Moroz, J. V. Schaftingen. Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007
    [7] M. Ghimenti, J. V. Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107–135. https://doi.org/10.1016/j.jfa.2016.04.019 doi: 10.1016/j.jfa.2016.04.019
    [8] J. Xia, Z. Q. Wang, Saddle solutions for the Choquard equation, Calc. Var. Partial Differ. Equations, 58 (2019), 1–30. https://doi.org/10.1007/s00526-019-1546-8 doi: 10.1007/s00526-019-1546-8
    [9] V. Moroz, J. V. Schaftingen. Existence of Groundstates for a class of nonlinear Choquard equations, Trans. Am. Math. Soc., 367 (2015), 6557–6579. https://doi.org/10.1515/ans-2016-0038 doi: 10.1515/ans-2016-0038
    [10] L. Battaglia, J. J. V. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations in the plane, Adv. Nonlinear Stud., 17 (2017), 581–594. https://doi.org/10.1515/ans-2016-0038 doi: 10.1515/ans-2016-0038
    [11] J. Chen, B. Guo, Blow up solutions for onr class of system of Pekar-Choquard type nonlinear Schrödinger equation, Appl. Math. Comput., 186 (2007), 83–92. https://doi.org/10.1016/j.amc.2006.07.089 doi: 10.1016/j.amc.2006.07.089
    [12] J. Seok, Nonlinear Choquard equations involving a critical local term, Appl. Math. Lett., 63 (2017), 77–87. https://doi.org/10.1016/j.aml.2016.07.027 doi: 10.1016/j.aml.2016.07.027
    [13] J. V. Schaftingen, J. Xia, Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent, J. Math. Anal. Appl., 464 (2018), 1184–1202. https://doi.org/10.1016/j.jmaa.2018.04.047 doi: 10.1016/j.jmaa.2018.04.047
    [14] L. Jeanjean, Existence of solutions with prescribed norm for semilinear equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [15] T. Bartsch, S. D. Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math., 100 (2013), 75–83. https://doi.org/10.1007/s00013-012-0468-x doi: 10.1007/s00013-012-0468-x
    [16] M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscr. Math., 143 (2014), 221–237. https://doi.org/10.1007/s00229-013-0627-9 doi: 10.1007/s00229-013-0627-9
    [17] L. Jeanjean, S. S Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32 (2019), 4942–4966. https://doi.org/10.1088/1361-6544/ab435e doi: 10.1088/1361-6544/ab435e
    [18] S. Deng, Q. Wu, Existence of normalized solutions for the Schrödinger equation, Commun. Anal. Mech., 15 (2023), 575–585. https://doi.org/10.3934/cam.2023028 doi: 10.3934/cam.2023028
    [19] L. Jeanjean, J. Jendrej, T. T. Le, N. Visciglia, Orbital stability of ground states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl., 164 (2022), 158–179. https://doi.org/10.1016/j.matpur.2022.06.005 doi: 10.1016/j.matpur.2022.06.005
    [20] W. Lv, Ground states of a Kirchhoff equation with the potential on the lattice graphs, Commun. Anal. Mech., 15 (2023), 792–810. https://doi.org/10.3934/cam.2023038 doi: 10.3934/cam.2023038
    [21] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
    [22] C. O. Alves, C. Ji, O. H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in $\mathbb{R}^{N}$, Calc. Var. Partial Differ. Equations, 61 (2022), 18. https://doi.org/10.1007/s00526-021-02123-1 doi: 10.1007/s00526-021-02123-1
    [23] D. Bonheure, J. B. Casteras, T. Gou, L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Am. Math. Soc., 372 (2019), 2167–2212. https://doi.org/10.1090/tran/7769 doi: 10.1090/tran/7769
    [24] H. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mech., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008
    [25] G. Li, H. Ye, The existence of positive solutions with prescribed $L^{2}$-norm for nonlinear Choquard equations, J. Math. Phys., 55 (2014), 121501. https://doi.org/10.1063/1.4902386 doi: 10.1063/1.4902386
    [26] S. Yuan, S. Chen, X. Tang, Normalized solutions for Choquard equations with general nonlinearities, Electron. Res. Arch., 28 (2020), 291–309. https://doi.org/10.3934/era.2020017 doi: 10.3934/era.2020017
    [27] T. Bartsch, Y. Liu, Z. Liu, Normalized solutions for a class of nonlinear Choquard equations, SN Partial Differ. Equations Appl., 1 (2020), 1–25. https://doi.org/10.1007/s42985-020-00036-w doi: 10.1007/s42985-020-00036-w
    [28] H. Ye, Mass minimizers and concentration for nonlinear Choquard equations in $\mathbb{R}^{N}$, Topol. Methods Nonlinear Anal., 48 (2016), 393–417. https://doi.org/10.12775/TMNA.2016.066 doi: 10.12775/TMNA.2016.066
    [29] S. Yao, J. Sun, T-F Wu, Normalized solutions for the Schrödinger equations with combined hartree type and power nonlinearities, preprint, arXiv: 2102.10268. https://doi.org/10.48550/arXiv.2102.10268
    [30] X. Li, Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability, Adv. Nonlinear Anal., 11 (2022), 1134–1164. https://doi.org/10.1515/anona-2022-0230 doi: 10.1515/anona-2022-0230
    [31] Y. Li, D. Zhao, Q. Wang, Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent, Z. Angew. Math. Phys., 70 (2019), 1–17. https://doi.org/10.1007/s00033-019-1172-5 doi: 10.1007/s00033-019-1172-5
    [32] J. Wang, W. Yang, Normalized solutions and asymptotical behavior of minimizer for the coupled Hartree equations, J. Differ. Equations, 265 (2018), 501–544. https://doi.org/10.1016/j.jde.2018.03.003 doi: 10.1016/j.jde.2018.03.003
    [33] S. Yao, H. Chen, V. D. R$\breve{a}$dulescu, J. Sun, Normalized solutions for lower critical Choquard equations with critical sobolev perturbation, SIAM J. Math. Anal., 54 (2022), 3696–3723. https://doi.org/10.1137/21M1463136 doi: 10.1137/21M1463136
    [34] J. Bellazzini, L. Jeanjean, On diplar quantum gases in the unstable regime, SIAM J. Math. Anal., 48 (2016), 2028–2058. https://doi.org/10.1137/15M1015959 doi: 10.1137/15M1015959
    [35] P.L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact case, Part I, Ann. inst. H. Poincaré Anal. Non Linéaire, 2 (1984), 109–145. https://doi.org/10.1016/S0294-1449(16)30428-0 doi: 10.1016/S0294-1449(16)30428-0
    [36] E. H. Lieb, M. Loss, Analysis, 2$^{nd}$ edition, American Mathematical Society, Providence, 2001.
    [37] D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8 (2019), 1184–1212. https://doi.org/10.1515/anona-2018-0019 doi: 10.1515/anona-2018-0019
    [38] P.L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact case, Part II, Ann. inst. H. Poincaré Anal. Non Linéaire, 4 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(663) PDF downloads(71) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog