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Abstract: In this paper, we considered the existence of ground state solutions to the following
Choquard equation 

− ∆u = λu + (Iα ∗ F(u)) f (u) + µ|u|q−2u in RN ,∫
RN

|u|2dx = a > 0,

where N ≥ 3, Iα is the Riesz potential of order α ∈ (0,N), 2 < q ≤ 2 + 4
N , µ > 0 and λ ∈ R is a

Lagrange multiplier. Under general assumptions on F ∈ C1(R,R), for a L2-subcritical and L2-critical
of perturbation µ|u|q−2u, we established several existence or nonexistence results about the normalized
ground state solutions.
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1. Introduction

In this paper, we are looking for solutions to the following Choquard equation
− ∆u = λu + (Iα ∗ F(u)) f (u) + µ|u|q−2u in RN ,∫
RN

|u|2dx = a > 0, (1.1)

where N ≥ 3, α ∈ (0,N), F(s) :=
∫ s

0
f (t)dt, µ > 0, 2 < q ≤ q := 2 + 4

N , a > 0 is a given mass, and λ ∈ R
appears as an unknown Lagrange multiplier. Iα : RN \ {0} 7→ R is the Riesz potential defined by

Iα(x) :=
Aα
|x|N−α

with Aα =
Γ( N−α

2 )

2απ
N
2 Γ(α2 )

.
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The Choquard equation

−∆u + u = (Iα ∗ F(u)) f (u) in RN , (1.2)

has been studied extensively for its profound physical backgrounds. In particular, when N = 3, α = 2,
and F(s) = s2

2 , Eq (1.2) turns into

−∆u + u = (I2 ∗ |u|2)u in R3, (1.3)

which was introduced by Pekar [1] to describe the quantum theory of a polaron at rest and then used by
Choquard [2] to study steady states of the one one-component plasma approximation to the Hartree-Fock
theory. Also, Eq (1.3) reemerged as a model of self-gravitating matter [3, 4], and in that context it is
known as the Schrödinger-Newton equation.

The pioneering mathematical research dates back to Lieb [2], in which the author proved the
existence and uniqueness for Eq (1.3) by variational methods. Later, Lions [5] obtained the existence
of normalized solutions. In the homogeneous nonlinearity case of Eq (1.2) with F(s) = 1

p |s|
p, Moroz

and Van Schaftingen in [6] established the existence of ground states to Eq (1.2) with an optimal range
N+α

N < p < N+α
N−2 . Moreover, Ghimenti and Van Schaftingen in [7] obtained solutions which are odd with

respect to a hyperplane of RN . The existence of saddle type nodal solution for the Choquard equation
was proven in the study [8]. For a more general nonlinearity, Moroz and Van Schaftingen [9] proved Eq
(1.2) has a ground solution when the nonlinearity satisfies Berestycki-Lions type condition and N ≥ 3,
see also [10] for the case N = 2. For the Choquard equation with a local nonlinear perturbation

−∆u + u = (Iα ∗ |u|p)|u|p−2u + |u|q−2u, in RN . (1.4)

When N = 3, 0 < α < 1, p = 2, and 4 ≤ q < 6, Chen and Gao in [11] obtained the existence of solutions
of Eq (1.4). For q = 2∗ in Eq (1.4), Seok in [12] constructed a family of nontrivial solutions. In [13], the
authors studied Eq (1.4) with a general local nonlinearity f (x, u) subcritical type instead of |u|q−2u.

From a physical point of view, it is interesting to find solutions with prescribed L2− norm, since
there is a conservation of mass. Solutions of this type are often referred to as normalized solutions. In
recent years, normalized solutions to nonlinear elliptic problems have attracted much attention from
researchers. In [14], Jeanjean using a mountain pass structure for a stretched functional to consider
the equation

−∆u = λu + f (u), in RN . (1.5)

He proved the existence of at least one normalized solution of Eq (1.5) in a purely L2− supercritical
case. Later, Bartsch and Valeriola [15] obtained the existence of infinitely many normalized solutions
by a new linking geometry for the stretched functional. For more general nonlinearity f (s) has L2−

subcritical growth, Shibata [16] obtained the existence and nonexistence of normalized ground state
solution of Eq (1.5) via minimizing method, Jeanjean and Lu in [17] showed the existence of nonradial
normalized solutions for any N ≥ 4. For more results on normalized solutions for Schrödinger equations
by variational methods, we would like to refer [18–23]. Also, for the evolution equations with the
singular potentials whose the steady state equations are the nonlinear elliptic equations, see [24].

Concerning the normalized solutions of Choquard equations, Li and Ye in [25] considered the
existence of normalized solutions to the following equation

−∆u = λu + (Iα ∗ F(u)) f (u), x ∈ RN , (1.6)
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under a set of assumptions on f , where f takes the special case f (s) = C1|s|r−2s +C2|s|p−2s requires that
N+2+α

N < r ≤ p < N+α
N−2 . Later, Yuan et al. [26] generalized the results in [25] to more general f ∈ C(R,R).

In [27], Bartsch et al. obtained the existence of infinitely many normalized solutions of (1.6).
For F(u) = |u|p

p , Ye in [28] studied the qualitative properties including existence and nonexistence
of minimizers of the functional associated to the Eq (1.6). Yao et al. in [29] considered normalized
solutions for the following problems

−∆u + λu = γ(Iα ∗ |u|p)|u|p−2u + µ|u|q−2u, in RN . (1.7)

Under different assumptions on γ, µ, p, and q, they proved several existence, multiplicity, and nonexis-
tence results. For more related topics, we refer the reader to [30–33].

Motivated by the above papers, it is natural to ask if the nonlinearity f (u) in Eq (1.1) satisfies general
growth assumptions, and if the normalized ground states still exist. In the present paper, we attempt to
study this kind of problem. In order to prove the existence of normalized ground state solutions to Eq
(1.1), assuming that nonlinearity f ∈ C(R,R) satisfies the growth assumptions:
( f1) lims→0

f (s)

|s|
α
N
= 0,

( f2) lim|s|→+∞
f (s)

|s|
2+α

N
= 0,

( f3) f is odd and f does not change sign on (0,+∞),
( f4) lims→0

F(s)

|s|
N+2+α

N
= +∞,

( f5) lim sups→0
F(s)

|s|
N+2+α

N
< +∞.

To find solutions of Eq (1.1), we define functional Iµ(u) : H1(RN)→ R by

Iµ(u) =
1
2

∫
RN
|∇u|2dx −

1
2

∫
RN

(Iα ∗ F(u))F(u)dx −
µ

q

∫
RN
|u|qdx.

For a > 0, set

S (a) = {u ∈ H1(RN) : |u|22 = a}.

Since f ∈ C(R,R) satisfies ( f1) and ( f2), using the Hardy-Littlewood-Sobolev inequality, we see that
Iµ ∈ C1(H1(RN),R). Normalized solutions of Eq (1.1) can be obtained by looking for critical points
of Iµ on the constraint S (a). It is standard that each critical point u ∈ S (a) of Iµ|S (a), corresponds a
Lagrangian multiplier λ ∈ R such that (u, λ) solves Eq (1.1). We will be interested in ground state
solutions, and following [34], we say that u ∈ S (a) is a normalized ground state solution to Eq (1.1) if
(Iµ|S (a))′(u) = 0 and

Iµ(u) = inf{Iµ(v) : v ∈ S (a), (Iµ|S (a))′(v) = 0}.

In particular, if u ∈ S (a) is a minimizer of the minimization problem

m(a) = inf
u∈S (a)

Iµ(u),

then u is a critical point of Iµ|S (a) as well as a normalized ground state to Eq (1.1).
Our main results dealing with problem (1.1) are the following:
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Theorem 1.1. Assume that ( f1)–( f3) hold. Let µ > 0 and 2 < q < q. Then, for any a > 0, there exists a
global minimizer ũ with respect to m(a), which solves Eq (1.1) for some λ̃ < 0. Moreover, ũ is a ground
state solution of Eq (1.1) which has constant sign, is radially symmetric with respect to some point
in RN , and is decreasing.

Theorem 1.2. Assume that ( f1)–( f3) hold and q = q. For any µ > 0 small enough, there exist a
a0 = a0(µ) > 0 and a∗ ∈ [0, a0) such that:
(i) for any a ∈ (0, a∗), there is no global minimizer with respect to m(a).
(ii) for any a ∈ (a∗, a0), there exists a global minimizer u with respect to m(a), which solves Eq (1.1)
for some λ < 0. Moreover, u is a ground state solution of Eq (1.1) which has constant sign, is radially
symmetric with respect to some point in RN , and is decreasing.
(iii) if ( f4) holds, then a∗ = 0, and if ( f5) holds, then a∗ > 0.

Remark 1. The value a0 = a0(µ) > 0 is explicit and is given in Lemma 4.1. In particular, a0 > 0 can be
taken arbitrary large by taking µ > 0 small enough.

The following result positively answers the existence of global minimizer with respect to m(a∗) for
the sharp threshold a∗ > 0.

Theorem 1.3. Assume that ( f1)–( f3) and
( f6) lim sups→0

F(s)

|s|
N+2+α

N
= 0 holds.

Let q = q. For a = a∗, there exists a global minimizer v with respect to m(a∗) = 0, which solves Eq (1.1)
for some λ < 0. In particular, v is a ground state solution of Eq (1.1) which has constant sign and is
radially symmetric with respect to some point in RN .

To the best of our knowledge, the main results in this paper are new. This is a complement of the
results for Choquard equations about the existence of normalized solutions. Our main theorems can
be viewed as an extension of some results in [25, 29] to more general cases. In our setting, we only
consider the situation when the constraint functional Iµ|S (a) is bounded from below and is coercive. As
we will see, the existence of normalized states of Eq (1.1) are strongly effected by further assumptions on
the exponent q. We are first devoted to prove the existence of ground state solutions of Eq (1.1) with
2 < q < 2 + 4

N by application of the concentration-compactness principle [35]. In this case, m(a) < 0 for
any a > 0 and the strict subadditivity inequality

m(a + b) < m(a) + m(b) for all a, b > 0 (1.8)

holds, which permits us to exclude the dichotomy of the minimizing sequence. However, in the case
of q = q := 2 + 4

N , compare to [29], for a general f , the strict subadditivity inequality (1.8) does not
hold, and m(a) < 0 for all a > 0 may not be satisfied. This prevents us from using the concentration-
compactness principle in a standard way. In the proof, we adopt some ideas in [16, 19] to recover the
compactness of minimizing sequence with respect to m(a).

The paper is organized as follows. In Section 2, we introduce the variational framework and give
some preliminary results. In Section 3, we discuss the case of 2 < q < q and prove Theorem 1.1. In
Section 4, we deal with the case of q = q and prove Theorems 1.2 and 1.3.

In this paper, we will use the following notations:
• H1(RN) is the usual Sobolev space endowed with the norm ∥u∥2 =

∫
RN (|∇u|2 + |u|2)dx.
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• Ls(RN), for 1 ≤ s < ∞, denotes the Lebesgue space with the norm |u|ss =
∫
RN |u|sdx.

• For any r > 0 and x ∈ RN , Br(x) denotes the ball of radius of r centered at the x.
• The letters C, C0,C′,C′′,C1,C2 · ·· are positive (possibly different) constants.
• on(1) denotes the vanishing quantities as n→ ∞.

2. Preliminaries

In this section, we give some results which will be useful in forthcoming sections. First, let us recall
the following Hardy-Littlewood-Sobolev inequality which will be frequently used throughout the paper.

Lemma 2.1. (See [ [36], Theorem4.3]). Suppose α ∈ (0,N), and s, r > 1 with 1
r +

1
s = 1 + αN . Let

f ∈ Ls(RN) and g ∈ Lr(RN). Then, there exists a constant C(N, α, s, r) > 0 such that∣∣∣∣∣∫
RN

∫
RN

f (x)|x − y|α−Ng(y)dxdy
∣∣∣∣∣ ≤ C(N, α, s, r)| f |s|g|r.

In particular, if r = s = 2N
N+α , then

C(N, α, s, r) = Cα := π
N−α

2 Γ(
α

2
)Γ−1(

N + α
2

)[Γ(
N
2

)Γ−1(N)]−
α
N .

Let N ≥ 1 and N+α
N < p < 2∗α := N+α

N−2 . Then, we introduce the following Gagliardo-Nirenberg
inequality of Hartree type ( [28])∫

RN

(Iα ∗ |u|p)|u|pdx ≤ CN,p|∇u|N p−N−α
2 |u|N+α−p(N−2)

2 . (2.1)

We also recall the following Gagliardo-Nirenberg inequality. For p ∈ (2, 2∗) and u ∈ H1(RN),

|u|p ≤ CN,p|∇u|γp

2 |u|
1−γp

2 , where γp =
N(p − 2)

2p
. (2.2)

Lemma 2.2. Assume that ( f1)-( f2) hold. Let {un} ⊂ H1(RN) be a bounded sequence. If either
limn→∞ |un|2 = 0 or limn→∞ |un| 2(N+α+2)

N+α
= 0 holds, then

lim
n→∞

∫
RN

(Iα ∗ F(un))F(un)dx = 0.

Proof. By ( f1) and ( f2), for any ε > 0, there exists Cε > 0 such that

|F(s)| ≤ ε|s|
N+α

N +Cε|s|
N+2+α

N .

Then, using Lemma 2.1, for u ∈ H1(RN) we obtain∣∣∣∣∣∣∣∣∣
∫
RN

(Iα ∗ F(u))F(u)dx

∣∣∣∣∣∣∣∣∣ ≤ ε2
∫
RN

(Iα ∗ |u|
N+α

N )|u|
N+α

N dx

Electronic Research Archive Volume 32, Issue 3, 1551–1573.



1556

+2εCε

∫
RN

(Iα ∗ |u|
N+α

N )|u|
N+α+2

N dx

+C2
ε

∫
RN

(Iα ∗ |u|
N+2+α

N )|u|
N+α+2

N dx (2.3)

≤ C1ε
2|u|

2(N+2)
N

2 +C2C2
ε |u|

2(N+2+α)
N

2(N+2+α)
N+α

.

By Eq (2.2), we have

|u|
2(N+2+α)

N
2(N+2+α)

N+α

≤ C3|∇u|22|u|
2(2+α)

N
2 . (2.4)

If limn→∞ |un|2 = 0, by Eqs (2.3), (2.4), and the boundedness of {un}, we get

lim
n→∞

∫
RN

(Iα ∗ F(un))F(un)dx = 0.

If limn→∞ |un| 2(N+α+2)
N+α
= 0, by Eq (2.3), we have

lim sup
n→∞

|

∫
RN

(Iα ∗ F(u))F(u)dx| ≤ C1ε
2|un|

2(N+2)
N

2 .

Since {un} is bounded in H1(RN) and ε > 0 is arbitrary, the conclusion holds. The proof is completed.

In our subsequent arguments, we will use the following nonlocal version of the Brezis-Lieb lemma.

Lemma 2.3. (See [ [37], Lemma 2.2]). Assume α ∈ (0,N) and there exists a constant C > 0 such that

| f (s)| ≤ C(|s|
α
N + |s|

2+α
N−2 ), s ∈ R.

Let {un} ⊂ H1(RN) be such that un ⇀ u weakly in H1(RN) and almost everywhere in RN as n→ ∞. Then,∫
RN

(Iα ∗ F(un))F(un)dx =
∫
RN

(Iα ∗ F(un − u))F(un − u)dx

+

∫
RN

(Iα ∗ F(u))F(u)dx + on(1).

Using a similar argument as the proof of ( [9] Theorem 3), we have the following Pohožaev of Eq
(1.1).

Lemma 2.4. Assume that N ≥ 3 and α ∈ (0,N). If f ∈ C(R,R) satisfies ( f1) and ( f2), and if
(u, λ) ∈ H1(RN) × R solves problem (1.1), then

P(u) =
N − 2

2
|∇u|22 −

N
2
λ|u|22 −

N + α
2

∫
RN

(Iα ∗ F(u))F(u)dx −
Nµ
q
|u|qq = 0.
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For each u ∈ S (a) and t > 0, we define the scaling function

ut(x) := t
N
2 u(tx).

It is clear that ut ∈ S (a) and

Iµ(ut) =
t2

2
|∇u|22 −

1
2tN+α

∫
RN

(Iα ∗ F(t
N
2 u))F(t

N
2 u)dx −

µ

q
t

N(q−2)
2 |u|qq.

3. L2-subcritical perturbation

In this section, we deal with the case 2 < q < q and prove Theorem 1.1.

Lemma 3.1. Assume that ( f1) and ( f2) hold. For any 2 < q < q and a, µ > 0, we have

−∞ < m(a) = inf
u∈S (a)

Iµ(u) < 0.

Proof. By ( f1) and ( f2), for any ε > 0, there exists Cε > 0 such that

|F(s)| ≤ Cε|s|
N+α

N + ε|s|
N+2+α

N .

Using Lemma 2.1 and Eq (2.2), we obtain, for u ∈ H1(RN)

|

∫
RN

(Iα ∗ F(u))F(u)dx| ≤ C3C2
ε |u|

2(N+2)
N

2 +C4ε
2|u|

2(α+2)
N

2 |∇u|22. (3.1)

Then, for any u ∈ S (a), by Eqs (2.2) and (3.1), we get

Iµ(u) ≥
1
2
|∇u|22 −C3C2

εa
N+2

N −C4ε
2a
α+2

N |∇u|22 −
µCq

N,q

q
a

q(1−γq)
2 |∇u|qγq

2 . (3.2)

Choosing ε = (4C4a
2+α

N )−
1
2 , it follows from Eq (3.2) that

Iµ(u) ≥
1
4
|∇u|22 −Ca

N+2
N − µCq

N,qq−1a
q(1−γq)

2 |∇u|qγq

2

for every u ∈ S (a). Since 2 < q < q, we see that 0 < qγq < 2, and hence Iµ is coercive on S (a), which
provides that m(a) > −∞.

On the other hand, for u ∈ S (a)

Iµ(ut) ≤
t2

2
|∇u|22 −

µ

q
t

N(q−2)
2 |u|qq

= t
N(q−2)

2

(
1
2

t2− N(q−2)
2 |∇u|22 −

µ

q
|u|qq

)
.

Noticing that 2 < q < q, we have 2 − N(q−2)
2 > 0, and hence Iµ(ut) < 0 for every u ∈ S (a) with t > 0

small enough. Therefore, we have that m(a) < 0 for any a > 0.
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Since m(a) < 0 for any a > 0, we can give the following strict sub-additivity.

Lemma 3.2. Let a1, a2 > 0 be such that a1 + a2 = a. Then,

m(a) < m(a1) + m(a2).

Proof. For u ∈ S (a) and θ > 1, we set u(x) = u(θ−
1
N x). Then, u(x) ∈ S (θa). Let {un} ⊂ S (a) be a

minimizing sequence for m(a). Since θ > 1, we have

m(θa) ≤ Iµ(un) =
θ1−

2
N

2
|∇un|

2
2 −
θ1+

α
N

2

∫
RN

(Iα ∗ F(un))F(un)dx −
µθ

q
|un|

q
q

< θIµ(un) = θm(a) + on(1).

As a consequence,

m(θa) ≤ θm(a),

with equality if and only if

lim
n→∞

(Iµ(un) − θIµ(un)) = 0. (3.3)

But this is can not occur. Otherwise, by Eq (3.3), we find

lim
n→∞

θ−
2
N − 1
2
|∇un|

2
2 +

1 − θ
α
N

2

∫
RN

(Iα ∗ F(un))F(un)dx

 = 0.

By Lemma 3.1, Iµ is coercive on S (a) and we have {un} is bounded in H1(RN). It follows from θ > 1 that

lim
n→∞
|∇un|

2
2 = 0 = lim

n→∞

∫
RN

(Iα ∗ F(un))F(un)dx.

Combining Eq (2.2) we get limn→∞ |un|
q
q = 0. Then, by Lemma 3.1, we obtain

0 > m(a) = lim
n→∞

Iµ(un) = 0,

a contradiction. Thus, we have the strict inequality

m(θa) < θm(a) for any θ > 1. (3.4)

Next, we show that m(a) < m(a1) + m(a2). We may assume that a1 ≥ a2, by Eq (3.4) we have

m(a) = m(
a
a1
· a1) <

a
a1

m(a1) = m(a1) +
a2

a1
m(a1) ≤ m(a1) + m(a2).

The proof is completed.
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Lemma 3.3. Assume that ( f1) and ( f2) hold and a, µ > 0. Let {un} ⊂ H1(RN) be a sequence such that

lim
n→∞

Iµ(un) = m(a), lim
n→∞
|un|

2
2 = a. (3.5)

Then, taking a subsequence if necessary, there exist ũ ∈ S (a) and a family {yn} ⊂ R
N such that

un(· + yn)→ ũ in H1(RN) as n→ ∞. Specifically, ũ is a global minimizer.

Proof. Since {un} ⊂ H1(RN) satisfies Eq (3.5), it is easy to see that {un} is bounded in H1(RN). From the
concentration-compactness lemma [35], there exists a subsequence of {un} (denoted in the same way)
satisfying one of the three following possibilities:

vanishing: for all R > 0

lim
n→∞

sup
y∈RN

∫
BR(y)

|un|
2dx = 0;

dichotomy: there exists a constant b ∈ (0, a), sequences {u(1)
n }, {u

(2)
n } bounded in H1(RN) such that as

n→ ∞ 

∣∣∣un − (u(1)
n + u(2)

n )
∣∣∣
p
→ 0, for 2 ≤ p < 2∗,

|u(1)
n |

2
2 → b, |u(2)

n |
2
2 → a − b, dist(supp u(1)

n , supp u(2)
n )→ +∞,

lim inf
n→∞

∫
RN

(|∇un|
2 − |∇u(1)

n |
2 − |∇u(2)

n |
2)dx ≥ 0;

(3.6)

compactness: there exists a sequence {yn} ⊂ R
N with the following property: for any ε > 0, there

exists R > 0 such that ∫
BR(yn)

|un|
2dx ≥ a − ε. (3.7)

Claim 1. Vanishing does not occur.
Otherwise, by Lemma I.1 of [38], we get un → 0 strongly in Lp(RN) for 2 < p < 2∗. Since

2 < 2(N+2+α)
N+α < 2∗, it follows from Lemma 2.2 that

lim
n→∞

∫
RN

(Iα ∗ F(un))F(un)dx = 0.

Then, by Lemma 3.1 and Eq (3.5) we have

0 > m(a) = lim
n→∞

Iµ(un) = lim
n→∞

1
2
|∇un|

2
2 ≥ 0.

This contradiction proves Claim 1.
Claim 2. Dichotomy does not occur.
Otherwise, if dichotomy occurs, there exist b ∈ (0, a) and sequences {u(1)

n }, {u
(2)
n } satisfying Eq (3.6).

Furthermore, we may assume

un = u(1)
n + u(2)

n + vn, u(1)
n u(2)

n = u(1)
n vn = u(2)

n vn = 0 almost everywhere in RN .
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Then, we have

|un|
q
q = |u

(1)
n |

q
q + |u

(2)
n |

q
q + |vn|

q
q, (3.8)

and ∫
RN

(Iα ∗ F(un))F(un)dx =
∫
RN

(Iα ∗ F(u(1)
n ))F(u(1)

n )dx +
∫
RN

(Iα ∗ F(u(2)
n ))F(u(2)

n )dx

+2
∫
RN

(Iα ∗ F(u(1)
n ))F(u(2)

n )dx + 2
∫
RN

(Iα ∗ F(un))F(vn)dx

+

∫
RN

(Iα ∗ F(vn))F(vn)dx. (3.9)

By ( f1), ( f2), and Lemma 2.1, we obtain∣∣∣∣∣∣∣∣∣
∫
RN

(Iα ∗ F(un))F(vn)dx

∣∣∣∣∣∣∣∣∣ ≤ C
(
|un|

2
2 + |un|

2(N+2+α)
N+α

2(N+2+α)
N+α

) N+α
2N

(
|vn|

2
2 + |vn|

2(N+2+α)
N+α

2(N+2+α)
N+α

) N+α
2N

.

By the definition of vn and Eq (3.6), we obtain that |vn|p → 0 for 2 ≤ p < 2∗. It follows from the above
inequality and the boundedness of {un} that

lim
n→∞

∫
RN

(Iα ∗ F(un))F(vn)dx = 0. (3.10)

Using Eq (3.6) and Lemma 2.2, we get

lim
n→∞

∫
RN

(Iα ∗ F(vn))F(vn)dx = 0. (3.11)

Moreover, by the Young’s inequality ( [36] Theorem 4.2) and dist(supp u(1)
n , supp u(2)

n ) → +∞, we
infer that

lim
n→∞

∫
RN

(Iα ∗ F(u(1)
n ))F(u(2)

n )dx = 0. (3.12)

Thus, Eqs (3.6) and (3.8)–(3.12) imply that

m(a) = lim
n→∞

Iµ(un) ≥ lim sup
n→∞

(Iµ(u(1)
n ) + Iµ(u(2)

n )) ≥ m(b) + m(a − b),

which contradicts to Lemma 3.2, and proves Claim 2.
Hence, the compactness holds, namely, there exists a subsequence {yn} ⊂ R

N such that ũn =

un(x + yn)→ ũ in L2(RN), ũn ⇀ ũ in H1(RN) and ũ ∈ S (a). It follows from interpolation inequality and
Sobolev inequality that

lim
n→∞
|̃un − ũ|p = 0, for 2 < p < 2∗.
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Then, Lemma 2.2 implies

lim
n→∞

∫
RN

(Iα ∗ F (̃un − ũ))F (̃un − ũ)dx = 0.

Hence,

m(a) ≤ Iµ(̃u) ≤ lim inf
n→∞

Iµ(̃un) = lim inf
n→∞

Iµ(un) = m(a).

Thus, we have Iµ(̃u) = m(a) and ∥̃un∥ → ∥̃u∥ as n→ ∞. Moreover, un(x + yn)→ ũ in H1(RN).

Proof. [Proof of Theorem 1.1] By Lemmas 3.1 and 3.3, there exists a global minimizer ũ for Iµ on S (a)
with m(a) = Iµ(̃u) < 0. Furthermore, ũ is a ground state solution of Eq (1.1) for some λ̃ ∈ R. Then, by
Lemma 2.4, we have

P(̃u) =
N − 2

2
|∇ũ|22 −

N
2
λ̃|̃u|22 −

N + α
2

∫
RN

(Iα ∗ F (̃u))F (̃u)dx −
Nµ
q
|̃u|qq = 0.

Then,

λa = 2m(a) −
2
N
|∇ũ|22 −

α

N

∫
RN

(Iα ∗ F (̃u))F (̃u)dx. (3.13)

Since
∫
RN

(Iα ∗ F (̃u))F (̃u)dx > 0, by Eq (3.13) we have λ̃ < 0.

By ( f3), without loss of generality, we may assume that f ≥ 0 on (0,+∞). Since f is odd, then F is
even and thus for every u ∈ H1(RN), Iµ(|u|) = Iµ(u). From this one easily obtain that the function |̃u| is
also a ground state solution of Eq (1.1). By regularity properties of [9], |̃u| is continuous, we can apply
the strong maximum principle get |̃u| > 0 on RN and thus ũ has constant sign.

Finally, we prove the symmetry of ũ. Assume that H ⊂ RN is a closed half-space and that σH denotes
the reflection with respect to ∂H. The polarization ũH(x) : RN → R of ũ is defined for x ∈ RN by

ũH(x) :=

 max{̃u(x), ũ(σH(x))} if x ∈ H,

min{̃u(x), ũ(σH(x))} if x < H.

By the properties of polarization ( [9] Lemma 5.4), we observe that∫
RN

|∇ũH |2dx =
∫
RN

|∇ũ|2dx,

and then ∫
RN

|̃uH |sdx =
∫
RN

|̃u|sdx, for any s ∈ [0,+∞).
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Moreover, since F is nondecreasing on (0,+∞), we have F (̃uH) = F (̃u)H. Therefore, by Lemma 5.5
of [9], we get

Iµ(̃uH) ≤ Iµ(̃u) (3.14)

with equality if and only if

either F (̃u)H = F (̃u) or F (̃u)H = F (̃u(σH)) in RN . (3.15)

On the other hand, since ũ ∈ S (a) and |̃u|22 = |̃u
H |22, we have Iµ(̃uH) ≥ m(a). It follows from Eq (3.14)

that Iµ(̃uH) = Iµ(̃u), and thus Eq (3.15) holds. If F (̃u)H = F (̃u), for every x ∈ H,∫ ũ(x)

ũ(σH(x))
f (t)dt = F (̃u(x)) − F (̃u(σH(x))) = F (̃uH(x)) − F (̃u(σH(x))) ≥ 0.

Since F is nondecreasing on (0,+∞), we get ũ(σH(x)) ≤ ũ(x). In particular, f (̃uH) = f (̃u) on RN , hence
ũH = ũ. If F (̃u(σH)) = F (̃u)H, we similarly get ũH = ũ(σH). Since the hyperplane H is arbitrary, in
either case we conclude that the function ũ is radially symmetric with respect to some point x0 ∈ R

N ,
and is radially decreasing.

4. L2-critical perturbation

In this section, we consider the case q = q and prove Theorems 1.2 and 1.3. Set aN := q

2Cq
N,q

> 0.

Lemma 4.1. Assume that ( f1) and ( f2) hold. For any µ > 0, there exists a0(µ) = (aNµ
−1)

N
2 , such that for

any a ∈ (0, a0), we have

−∞ < m(a) ≤ 0.

Proof. For every u ∈ S (a), by Eqs (2.2) and (3.1), we get

Iµ(u) ≥ (
1
2
−
µCq

N,q

q
a

2
N )|∇u|22 −C3C2

εa
N+2

N −C4ε
2a
α+2

N |∇u|22.

Since a < a0, we have 1
2 −

µCq
N,q

q a
2
N > 0. We choose ε > 0 small such that C4ε

2a
α+2

N = 1
2( 1

2 −
µCq

N,q

q a
2
N ), it

follows that

Iµ(u) ≥
1
2

1
2
−
µCq

N,q

q
a

2
N

 |∇u|22 −Ca
N+2

N .

This implies m(a) > −∞.
In addition, for u ∈ S (a) we have

m(a) ≤ Iµ(ut) = t2
(
1
2
|∇u|22 −

µ

q
|u|qq

)
−

1
2

∫
RN

(Iα ∗ F(ut))F(ut)dx. (4.1)
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Noticing that a < a0, by Eq (2.2), we have 1
2 |∇u|22 −

µ

q |u|
q
q > 0, and

lim
t→0

t2
(
1
2
|∇u|22 −

µ

q
|u|qq

)
= 0.

Moreover, |ut|
2(N+2+α)

N+α
2(N+2+α)

N+α

= t
2N

N+α |u|
2(N+2+α)

N+α
2(N+2+α)

N+α

→ 0 as t → 0. By Lemma 2.2, we have

lim
t→0

∫
RN

(Iα ∗ F(ut))F(ut)dx = 0.

Then, by Eq (4.1) we infer that

m(a) ≤ lim
t→0

Iµ(ut) = 0.

Thus, m(a) ≤ 0. The proof is completed.

Next, we give some properties of m(a).

Lemma 4.2. It holds that
(i) Let a ∈ (0, a0). Then, we have for all b ∈ (0, a)

m(a) ≤ m(b) + m(a − b),

and if m(b) or m(a − b) is reached, then the inequality is strict.
(ii) Taking µ > 0 small enough, there exists b0 > 0 such that 0 < b0 < a0(µ). Then, for any a ∈ (b0, a0),
we have m(a) < 0.
(iii) a ∈ (0, a0) 7→ m(a) is continuous.

Proof. (i) Fix b ∈ (0, a), we first show that

m(θb) ≤ θm(b), for any θ ∈ (1,
a
b

], (4.2)

and that if m(b) is reached, the inequality is strict. By the definition of m(b), for any ε > 0 sufficiently
small, there exists a u ∈ S (b) such that

Iµ(u) ≤ m(b) + ε. (4.3)

Now set u(x) = u(θ−
1
N x). Note that u(x) ∈ S (θb). It follows from Eq (4.3) that

m(θb) ≤ Iµ(u) < θIµ(u) ≤ θm(b) + θε. (4.4)

Since ε > 0 is arbitrary, we have that m(θb) ≤ θm(b). If m(b) is reached, we can let ε = 0 in Eq (4.3),
and thus Eq (4.4) implies m(θb) < θm(b).

Then, by Eq (4.2) we have

m(a) =
a − b

a
m(a) +

b
a

m(a)
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=
a − b

a
m(

a
a − b

· (a − b)) +
b
a

m(
a
b
· b)

≤ m(a − b) + m(b),

with a strict inequality if m(b) is reached.
(ii) By ( f3), there exists v ∈ H1(RN) such that∫

RN

(Iα ∗ F(v))F(v)dx > 0.

For any b > 0, set vb(x) = v(b−
1
N |v|

2
N
2 x). Obviously vb ∈ S (b). Then, we have

Iµ(vb) =
1
2

∫
RN

|∇vb|
2dx −

1
2

∫
RN

(Iα ∗ F(vb))F(vb)dx −
µ

q

∫
RN

|vb|
qdx

=
b

N−2
N

2|v|
2(N−2)

N
2

|∇v|22 −
b

N+α
N

2|v|
2(N+α)

N
2

∫
RN

(Iα ∗ F(v))F(v)dx

−
µb

q|v|22

∫
RN

|v|qdx

:= g(b).

Since g(b)→ −∞ as b→ +∞ and by choosing b0 > 0 large such that Iµ(vb0) < 0, it follows that

m(b0) ≤ Iµ(vb0) < 0.

Now, taking µ > 0 small enough such that b0 < a0(µ). For any a ∈ (b0,a0), by Lemma 4.1 and (i), we obtain

m(a) ≤ m(a − b0) + m(b0) ≤ m(b0) < 0.

(iii) Let a ∈ (0, a0) be arbitrary and {an} ⊂ (0, a0) be such that an → a as n→ ∞. By the definition of
m(an), for every n there exists un ∈ S (an) such that

Iµ(un) ≤ m(an) +
1
n
. (4.5)

Since m(an) ≤ 0, by the proof of Lemma 4.1, the sequence {un} is bounded in H1(RN). Set vn =
√

a
an

un.
It is clear that vn ∈ S (a). Then, we can write

m(a) ≤ Iµ(vn) = Iµ(un) + (Iµ(vn) − Iµ(un)), (4.6)

where

Iµ(vn) − Iµ(un) =
1
2

(
a
an
− 1)|∇un|

2
2 −
µ

q

[
(

a
an

)
q
2 − 1

]
|un|

q
q (4.7)

−
1
2

∫
RN

[(Iα ∗ F(vn))F(vn) − (Iα ∗ F(un))F(un)] dx.
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By the boundedness of {un}, we have {|un|
q
q} is bounded. Thus, we have

lim
n→∞

(
a
an
− 1)|∇un|

2
2 = 0 = lim

n→∞
[(

a
an

)
q
2 − 1]|un|

q
q. (4.8)

Moreover, ∫
RN

[(Iα ∗ F(vn))F(vn) − (Iα ∗ F(un))F(un)]dx

=

∫
RN

(Iα ∗ F(vn))(F(vn) − F(un))dx (4.9)

+

∫
RN

(Iα ∗ (F(vn) − F(un)))F(un)dx.

Since an → a as n→ ∞, then {
√

a
an
} is bounded. It follows from ( f1) and ( f2) that

|F(vn) − F(un)| ≤
∫ 1

0
| f (un + t(vn − un))| · |vn − un|dt

≤ C(
√

a
an
− 1)

(
|un|

N+α
N + |un|

N+α+2
N

)
.

Thus, using Lemma 2.1 and the Sobolev imbedding inequality, we get∣∣∣∣∣∣∣∣∣
∫
RN

(Iα ∗ (F(vn) − F(un)))F(un)dx

∣∣∣∣∣∣∣∣∣ ≤ Cα|F(un)| 2N
N+α
|F(vn) − F(un)| 2N

N+α

≤ C(
√

a
an
− 1)

(
|un|

2
2 + |un|

2(N+α+2)
N+α

2(N+α+2)
N+α

) N+α
N

.

Thus,

lim
n→∞

∫
RN

(Iα ∗ (F(vn) − F(un)))F(un)dx = 0.

Similarly,

lim
n→∞

∫
RN

(Iα ∗ F(vn))(F(vn) − F(un))dx = 0.

Then, in view of Eq (4.9), we have

lim
n→∞

∫
RN

[(Iα ∗ F(vn))F(vn) − (Iα ∗ F(un))F(un)]dx = 0. (4.10)
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By Eqs (4.7), (4.8), and (4.10), we have

lim
n→∞

(Iµ(vn) − Iµ(un)) = 0. (4.11)

It follows from Eqs (4.5) and (4.6) that

m(a) ≤ lim inf
n→∞

m(an).

On the other hand, for any ε > 0, there exists u ∈ S (a) such that

Iµ(u) ≤ m(a) + ε. (4.12)

Set ũn(x) =
√

an
a u(x). Then, ũn ∈ S (an). Similar to Eq (4.11), we have

Iµ(̃un) = Iµ(u) + on(1).

It follows from Eq (4.12) that

m(an) ≤ Iµ(̃un) = Iµ(u) + (Iµ(̃un) − Iµ(u)) ≤ m(a) + ε + on(1).

Since ε > 0 is arbitrary, we get

lim sup
n→∞

m(an) ≤ m(a).

Thus, we infer that m(an)→ m(a) as n→ ∞.

Now, for any fixed µ > 0 small enough, we define

a∗ = inf{a : 0 < a < a0(µ),m(a) < 0}.

By Lemma 4.1, a∗ ∈ [0, a0(µ)) is well defined and satisfying

m(a) = 0 if 0 < a ≤ a∗, m(a) < 0 if a∗ < a < a0. (4.13)

Lemma 4.3. Assume that ( f1)–( f3) hold. For any a ∈ (0, a0), if ( f4) holds, then a∗ = 0; if ( f5) holds,
then a∗ > 0.

Proof. (i) Let a ∈ (0, a0), we choose u ∈ S (a) ∩C∞0 (RN) and set

L =

 2|∇u|22∫
RN

(Iα ∗ |u|
N+2+α

N )|u|
N+2+α

N dx


1
2

> 0.

By the assumption ( f4), there exists δ > 0 such that

F(s) ≥ L|s|
N+2+α

N for all |s| < δ.
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Since |ut|∞ ≤ δ for sufficiently small t > 0, we have

Iµ(ut) ≤
1
2
|∇ut|22 −

1
2

∫
RN

(Iα ∗ F(ut))F(ut)dx

≤
1
2

t2|∇u|22 −
L2

2
t2

∫
RN

(Iα ∗ |u|
N+2+α

N )|u|
N+2+α

N dx

= −
1
2

t2|∇u|22 < 0.

Thus, m(a) ≤ Iµ(ut) < 0 for any a ∈ (0, a0). By the definition of a∗, we get a∗ = 0.
(ii) By ( f2) and ( f5), there exists C′ > 0 such that

|F(s)| ≤ C′|s|
N+2+α

N for all s ∈ R. (4.14)

For u ∈ S (a), by Eqs (2.1) and (4.14), we get∫
RN

(Iα ∗ F(u))F(u)dx ≤ C′′a
2+α

N |∇u|22.

It follows from Eq (2.2) that

Iµ(u) ≥
1
2
|∇u|22 −

C′′

2
a

2+α
N |∇u|22 −

µ

q
Cq

N,qa
2
N |∇u|22.

Taking a > 0 small enough such that C′′
2 a

2+α
N +

µ

qCq
N,qa

2
N ≤ 1

2 , we get Iµ(u) ≥ 0. This implies m(a) ≥ 0 for
a small a > 0. From Lemma 4.1 that m(a) = 0 for a small a > 0. Hence, we have a∗ > 0.

Lemma 4.4. Assume that ( f1)–( f3) hold. Let µ > 0 and a ∈ (0, a0). Let {un} ⊂ S (a) be a minimizing
sequence for m(a). Then, one of the following holds:
(i).

lim sup
n→∞

sup
z∈RN

∫
B1(z)

|un|
2dx = 0.

(ii). Taking a subsequence if necessary, there exist u ∈ S (a) and a family {yn} ⊂ R
N such that

un(· + yn)→ u in H1(RN) as n→ ∞. Specifically, u is a global minimizer.

Proof. Suppose that {un} ⊂ S (a) is a minimizing sequence which does not satisfy (i). Then, we have

0 < lim
n→∞

sup
z∈RN

∫
B1(z)

|un|
2dx ≤ a.

Taking a subsequence if necessary, we may assume there exists a family {yn} ⊂ R
N such that

0 < lim
n→∞

∫
B1(yn)

|un|
2dx ≤ a.
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Let us consider un(· + yn). Since {un} ⊂ S (a) is a minimizing sequence of m(a), by the proof of
Lemma 4.1, {un} is bounded in H1(RN), Hence, {un(· + yn)} is bounded in H1(RN). Then, there exists
u ∈ H1(RN) such that un(· + yn) ⇀ u in H1(RN), un(· + yn) → u in Lp

loc(R
N) for 2 ≤ p < 2∗, and

un(· + yn)→ u almost everywhere in RN . It follows that∫
B1(0)

|un(x + yn)|2dx > 0.

Then, by un(· + yn)→ u in L2
loc(R

N), we obtain that u , 0 and |u|22 > 0. Set vn(x) = un(x + yn) − u. Then,
vn ⇀ 0 in H1(RN), and we have

|un(· + yn)|22 = |un|
2
2 = |vn + u|22 = |vn|

2
2 + |u|

2
2 + on(1), (4.15)

|∇un(· + yn)|22 = |∇un|
2
2 = |∇(vn + u)|22 = |∇vn|

2
2 + |∇u|22 + on(1), (4.16)

|un(· + yn)|qq = |un|
q
q = |vn + u|qq = |vn|

q
q + |u|

q
q + on(1). (4.17)

Moreover, by Lemma 2.3, we have∫
RN

(Iα ∗ F(un))F(un)dx =
∫
RN

(Iα ∗ F(vn))F(vn)dx

+

∫
RN

(Iα ∗ F(u))F(u)dx + on(1). (4.18)

Since Iµ(un) = Iµ(un(· + yn)) = Iµ(vn + u), by Eqs (4.16)–(4.18), we obtain

Iµ(un) = Iµ(vn) + Iµ(u) + on(1). (4.19)

Claim. limn→∞ |vn|
2
2 = 0.

Denote b = |u|22 > 0. By Eq (4.15), we see that b ≤ a, and if we prove that b = a, then the claim
holds. We suppose by contradiction that b < a. Since vn ∈ S (|vn|

2
2), then

Iµ(vn) ≥ m(|vn|
2
2).

It follows from Iµ(un)→ m(a) and Eq (4.19) that

m(a) = Iµ(vn) + Iµ(u) + on(1) ≥ m(|vn|
2
2) + Iµ(u) + on(1).

By Lemma 4.2 (iii) and Eq (4.15), we obtain

m(a) ≥ m(a − b) + Iµ(u). (4.20)

Note that b = |u|22, we have u ∈ S (b) and Iµ(u) ≥ m(b). If Iµ(u) > m(b), then Lemma 4.2 (i) and Eq
(4.20) imply

m(a) > m(a − b) + m(b) ≥ m(a),
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which is impossible. Hence, Iµ(u) = m(b), that is u is a minimizer of m(b) on S (b). It follows from
Lemma 4.2 (i) and Eq (4.20) that

m(a) ≥ m(a − b) + Iµ(u) = m(a − b) + m(b) > m(a − b + b) = m(a),

which is a contradiction. Thus, the claim holds and Eq (4.15) implies |u|22 = a.
Finally, we show that limn→∞ |∇vn|

2
2 = 0. Since u ∈ S (a), we have Iµ(u) ≥ m(a). It follows from Eq

(4.19) that

m(a) = lim
n→∞

Iµ(vn) + Iµ(u) ≥ lim
n→∞

Iµ(vn) + m(a),

this implies

lim
n→∞

Iµ(vn) ≤ 0. (4.21)

On the other hand, by Lemma 2.2, Eq (2.2), and |vn|
2
2 → 0, we infer that

lim
n→∞

∫
RN

(Iα ∗ F(vn))F(vn)dx = 0, lim
n→∞

∫
RN

|vn|
qdx = 0.

In view of Eq (4.21), we get

lim
n→∞

1
2
|∇vn|

2
2 = lim

n→∞
Iµ(vn) ≤ 0.

Then, we have limn→∞ |∇vn|
2
2 = 0. It follows from |vn|

2
2 → 0 that vn → 0 in H1(RN). Hence, un(·+yn)→ u

in H1(RN) as n→ ∞.

Proof. [Proof of Theorem 1.2] (i) For the case 0 < a < a∗, we assume by contradiction that there exists
a global minimizer with respect to m(a). By Eq (4.13), we know m(a) = 0. By Lemma 4.2 (i) with the
strict inequality, we infer that

0 = m(a∗) < m(a∗ − a) + m(a) = m(a) = 0,

which is a contradiction.
(ii) For the case a∗ < a < a0. By Eq (4.13), we have m(a) < 0. Let {un} ⊂ S (a) satisfying

limn→∞ Iµ(un) = m(a). It is easy to see that {un} is bounded in H1(RN). Then, one of the two alternatives
in Lemma 4.4 occurs. Let assume that (i) of Lemma 4.4 take place. The Lemma 1.1 of [38] implies
un → 0 in Lt(RN) for 2 < t < 2∗. Moreover, since 2 < 2(N+2+α)

N+2 < 2∗, by Lemma 2.2 we have

lim
n→∞

∫
RN

(Iα ∗ F(un))F(un)dx = 0 and lim
n→∞

∫
RN

|un|
qdx = 0.

From this, we infer that

m(a) = lim
n→∞

Iµ(un) = lim
n→∞

1
2
|∇un|

2
2 ≥ 0,

which contradicts to m(a) < 0. Thus, Lemma 4.4 (ii) holds, namely, there exist u ∈ S (a) and a family
{yn} ⊂ R

N such that un(· + yn)→ u in H1(RN) as n→ ∞, and u is a global minimizer to m(a). Moreover,
u is a ground state solution to Eq (1.1) for some λ ∈ R. By Lemma 2.4, Eq (3.13), and m(a) < 0, we
have λ < 0. Similar as the proof of Theorem 1.1, u has constant sign and is radially symmetric about a
point in RN .
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Proof. [Proof of Theorem 1.4] By ( f6) and (iii) of Theorem 1.2, we have a∗ > 0. Let an = a∗ + l
n for

any n ∈ N, where 0 < l < a0 − a∗. By Eq (4.13) and Theorem 1.2 (ii), for every n, there exists a global
minimizer un ∈ S (an) such that

Iµ(un) = m(an) < 0. (4.22)

Then, {un} is bounded in H1(RN). Since an → a∗, we have limn→∞ |un|
2
2 = a∗. Set vn =

√
a∗
|un |2
· un. Clearly,

vn ∈ S (a∗) and
√

a∗
|un |2
→ 1 as n→ ∞. By the similar proof of Lemma 4.2 (iii), we obtain

lim
n→∞

Iµ(vn) = lim
n→∞

Iµ(un) = lim
n→∞

m(an) = m(a∗) = 0.

Thus, {vn} is a minimizing sequence with respect to m(a∗).
Next, we prove that {vn} is non-vanishing, that is

δ := lim
n→∞

sup
z∈RN

∫
B1(z)

|vn|
2dx > 0.

Otherwise, δ = 0. By the definition of vn and
√

a∗
|un |2
→ 1, we get

lim
n→∞

sup
z∈RN

∫
B(z,1)

|un|
2dx = 0. (4.23)

By (ii) of Theorem 1.2, un satisfies Eq (1.1) and we may assume that un is radially symmetric with
respect to the origin and decreasing for any n ∈ N. Using the elliptic regularity theory, we see that {un}

is bounded in C1(B(0, 1)). Thus, by Eq (4.23) we get

un(0) = |un|∞ → 0 as n→ ∞.

It follows from ( f6) that for any ε > 0 and sufficiently large n,∫
RN

(Iα ∗ F(un))F(un)dx ≤ Cε2a
2+α

N
n |∇un|

2
2

≤ Cε2(a∗ + l)
2+α

N |∇un|
2
2.

Choosing ε > 0 small enough such that Cε2(a∗ + l)
2+α

N ≤ 1
2 −

µ

qCq
N,q(a∗ + l)

2
N , then by Eq (2.2) we have

Iµ(un) ≥
1
2

(
1
2
−
µ

q
Cq

N,q(a∗ + l)
2
N

)
|∇un|

2
2 ≥ 0,

which contradicts Eq (4.22), and hence δ > 0.
Then Lemma 4.4 (ii) holds, that is, up to a subsequence, there exist v ∈ S (a∗) and a family {yn} ⊂ R

N

such that vn(· + yn)→ v in H1(RN) as n→ ∞. Then, v is a global minimizer to m(a∗). Moreover, v is a
ground state solution to (1.1) for some λ ∈ R. By Lemma 2.4 and Eq (3.13), we have

λa∗ = 2m(a∗) −
2
N
|∇v|22 −

α

N

∫
RN

(Iα ∗ F(v))F(v)dx

= −
2
N
|∇v|22 −

α

N

∫
RN

(Iα ∗ F(v))F(v)dx < 0,

which implies λ < 0. By the same arguments of Theorem 1.1, we obtain the symmetric of v.
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