We study the existence and orbital stability of normalized solutions of the biharmonic equation with the mixed dispersion and a general nonlinear term
$ \begin{equation*} \gamma\Delta^2u-\beta\Delta u+\lambda u = f(u), \quad x\in\mathbb{R}^N \end{equation*} $
with a priori prescribed $ L^2 $-norm constraint $ S_a: = \left\{u\in H^2(\mathbb{R}^N):\int_{\mathbb{R}^N}|u|^2dx = a\right\}, $ where $ a > 0 $, $ \gamma > 0, \beta\in\mathbb{R} $ and the nonlinear term $ f $ satisfies the suitable $ L^2 $-subcritical assumptions. When $ \beta\geq0 $, we prove that there exists a threshold value $ a_0\geq0 $ such that the equation above has a ground state solution which is orbitally stable if $ a > a_0 $ and has no ground state solution if $ a < a_0 $. However, for $ \beta < 0 $, this case is more involved. Under an additional assumption on $ f $, we get the similar results on the existence and orbital stability of ground state. Finally, we consider a specific nonlinearity $ f(u) = |u|^{p-2}u+\mu|u|^{q-2}u, 2 < q < p < 2+8/N, \mu < 0 $ under the case $ \beta < 0 $, which does not satisfy the additional assumption. And we use the example to show that the energy in the case $ \beta < 0 $ exhibits a more complicated nature than that of the case $ \beta\geq0 $.
Citation: Haijun Luo, Zhitao Zhang. Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrödinger equations[J]. Electronic Research Archive, 2022, 30(8): 2871-2898. doi: 10.3934/era.2022146
We study the existence and orbital stability of normalized solutions of the biharmonic equation with the mixed dispersion and a general nonlinear term
$ \begin{equation*} \gamma\Delta^2u-\beta\Delta u+\lambda u = f(u), \quad x\in\mathbb{R}^N \end{equation*} $
with a priori prescribed $ L^2 $-norm constraint $ S_a: = \left\{u\in H^2(\mathbb{R}^N):\int_{\mathbb{R}^N}|u|^2dx = a\right\}, $ where $ a > 0 $, $ \gamma > 0, \beta\in\mathbb{R} $ and the nonlinear term $ f $ satisfies the suitable $ L^2 $-subcritical assumptions. When $ \beta\geq0 $, we prove that there exists a threshold value $ a_0\geq0 $ such that the equation above has a ground state solution which is orbitally stable if $ a > a_0 $ and has no ground state solution if $ a < a_0 $. However, for $ \beta < 0 $, this case is more involved. Under an additional assumption on $ f $, we get the similar results on the existence and orbital stability of ground state. Finally, we consider a specific nonlinearity $ f(u) = |u|^{p-2}u+\mu|u|^{q-2}u, 2 < q < p < 2+8/N, \mu < 0 $ under the case $ \beta < 0 $, which does not satisfy the additional assumption. And we use the example to show that the energy in the case $ \beta < 0 $ exhibits a more complicated nature than that of the case $ \beta\geq0 $.
[1] | G. Fibich, B. Ilan, G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437–1462. https://doi.org/10.1137/S0036139901387241 doi: 10.1137/S0036139901387241 |
[2] | G. Baruch, G. Fibich, Singular solutions of the $L^2$-supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity, 24 (2011), 1843–1859. https://doi.org/10.1088/0951-7715/24/6/009 doi: 10.1088/0951-7715/24/6/009 |
[3] | G. Baruch, G. Fibich, E. Mandelbaum, Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 2867–2887. https://doi.org/10.1088/0951-7715/23/11/008 doi: 10.1088/0951-7715/23/11/008 |
[4] | G. Baruch, G. Fibich, E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math., 70 (2010), 3319–3341. https://doi.org/10.1137/100784199 doi: 10.1137/100784199 |
[5] | D. Bonheure, J.-B. Casteras, E. dos Santos, R. Nascimento, Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, SIAM J. Math. Anal., 50 (2018), 5027–5071. https://doi.org/10.1137/17M1154138 doi: 10.1137/17M1154138 |
[6] | D. Bonheure, J.-B. Casteras, T. Gou, L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167–2212. https://doi.org/10.1090/tran/7769 doi: 10.1090/tran/7769 |
[7] | T. Luo, S. Zheng, S. Zhu, Orbital stability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions, arXiv preprint, (2019), arXiv: 1904.02540. https://doi.org/10.48550/arXiv.1904.02540 |
[8] | T. Cazenave, P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504 |
[9] | P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X |
[10] | X. Zhu, H. Zhou, Bifurcation from the essential spectrum of superlinear elliptic equations, Appl. Anal., 28 (1988), 51–66. https://doi.org/10.1080/00036818808839748 doi: 10.1080/00036818808839748 |
[11] | M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math., 143 (2014), 221–237. https://doi.org/10.1007/s00229-013-0627-9 doi: 10.1007/s00229-013-0627-9 |
[12] | J. Hirata, K. Tanaka, Scalar field equations with $L^2$ constraint: Mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud., 19 (2019), 263–290. https://doi.org/10.1515/ans-2018-2039 doi: 10.1515/ans-2018-2039 |
[13] | L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32 (2019), 4942–4966. https://doi.org/10.1088/1361-6544/ab435e doi: 10.1088/1361-6544/ab435e |
[14] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1 |
[15] | H. Berestycki, T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. (French) [Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations], C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489–492. |
[16] | S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455–463. https://doi.org/10.1515/ans-2008-0302 doi: 10.1515/ans-2008-0302 |
[17] | T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math. (Basel), 100 (2013), 75–83. https://doi.org/10.1007/s00013-012-0468-x doi: 10.1007/s00013-012-0468-x |
[18] | B. Bieganowski, J. Mederski, Normalized ground states of the nonlinear Schrödinger equation equation with at least mass critical growth, J. Funct. Anal., 280 (2021), 108989. https://doi.org/10.1016/j.jfa.2021.108989 doi: 10.1016/j.jfa.2021.108989 |
[19] | L. Jeanjean, S. Lu, A mass supercritical problem revisited, Calc. Var. Partial Differential Equations, 59 (2020), 1–43. https://doi.org/10.1007/s00526-020-01828-z doi: 10.1007/s00526-020-01828-z |
[20] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016 |
[21] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610 |
[22] | A. J. Fernandez, L. Jeanjean, R. Mandel, M. Maris, Some non-homogeneous Gagliardo-Nirenberg inequalities and application to a biharmonic non-linear Schrödinger equation, arXiv preprint, (2020), arXiv: 2010.01448. |
[23] | N. Boussaïd, A. J. Fernández, L. Jeanjean, Some remarks on a minimization problem associated to a fourth order nonlinear Schrödinger equation, arXiv preprint, (2019), arXiv: 1910.13177v1. |
[24] | X. Luo, T. Yang, Normalized solutions for a fourth-order Schrödinger equation with positive second-order dispersion coefficient, arXiv preprint, (2019), arXiv: 1908.03079v1. |
[25] | H. Ye, The existence of normalized solutions for $L^2$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 66 (2015), 1483–1497. https://doi.org/10.1007/s00033-014-0474-x doi: 10.1007/s00033-014-0474-x |
[26] | T. Bartsch, N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998–5037. https://doi.org/10.1016/j.jfa.2017.01.025 doi: 10.1016/j.jfa.2017.01.025 |
[27] | B. Feng, J. Ren, Q. Wang, Existence and instability of normalized standing waves for the fractional Schrödinger equations in the $L^2$-supercritical case, J. Math. Phys., 61 (2020), 071511. https://doi.org/10.1063/5.0006247 doi: 10.1063/5.0006247 |
[28] | B. Guo, D. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations, J. Math. Phys., 53 (2012), 083702. https://doi.org/10.1063/1.4746806 doi: 10.1063/1.4746806 |
[29] | Y. Guo, Z.-Q. Wang, X. Zeng, H. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957–979. https://doi.org/10.1088/1361-6544/aa99a8 doi: 10.1088/1361-6544/aa99a8 |
[30] | G. Li, X. Luo, Normalized solutions for the Chern-Simons-Schrödinger equation in $\mathbb{R}^2$, Ann. Acad. Sci. Fenn. Math., 42 (2017), 405–428. https://doi.org/10.5186/aasfm.2017.4223 doi: 10.5186/aasfm.2017.4223 |
[31] | H. Luo, Z. Zhang, Limit configurations of Schrödinger systems versus optimal partition for the principal eigenvalue of elliptic systems, Adv. Nonlinear Stud., 19 (2019), 693–715. https://doi.org/10.1515/ans-2019-2057 doi: 10.1515/ans-2019-2057 |
[32] | H. Luo, Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 143, 35 pp. https://doi.org/10.1007/s00526-020-01814-5 doi: 10.1007/s00526-020-01814-5 |
[33] | H. Luo, Z. Zhang, Partial symmetry of normalized solutions for a doubly coupled Schrödinger system, Partial Differ. Equ. Appl., 1 (2020), Paper No. 24, 15 pp. https://doi.org/10.1007/s42985-020-00016-0 doi: 10.1007/s42985-020-00016-0 |
[34] | H. Luo, D. Wu, Normalized ground states for general pseudo-relativistic Schrödinger equations, Appl. Anal., (2020), 1–22. https://doi.org/10.1080/00036811.2020.1849631 doi: 10.1080/00036811.2020.1849631 |
[35] | D. Wu, Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity, J. Math. Anal. Appl., 411 (2014), 530–542. https://doi.org/10.1016/j.jmaa.2013.09.054 doi: 10.1016/j.jmaa.2013.09.054 |
[36] | E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili. (Italian), Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305. |
[37] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162. |
[38] | M. Willem, Minimax Theorems, 1nd edition, Birkh$\ddot{a}$user, Boston, 1996. Available from: https://link.springer.com/book/10.1007/978-1-4612-4146-1. |
[39] | H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. https://doi.org/10.1090/S0002-9939-1983-0699419-3 doi: 10.1090/S0002-9939-1983-0699419-3 |
[40] | M. Ben-Artzi, H. Koch, J.C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87–92. https://doi.org/10.1016/S0764-4442(00)00120-8 doi: 10.1016/S0764-4442(00)00120-8 |
[41] | T. Gou, Z. Zhang, Normalized solutions to the Chern-Simons-Schrödinger system, J. Funct. Anal., 280 (2021), 108894, 65 pp. https://doi.org/10.1016/j.jfa.2020.108894 doi: 10.1016/j.jfa.2020.108894 |