In this paper, we establish some almost-Schur type inequalities on sub-static manifolds, naturally arising in General Relativity. In particular, our results generalize those in [
Citation: Fanqi Zeng. Some almost-Schur type inequalities and applications on sub-static manifolds[J]. Electronic Research Archive, 2022, 30(8): 2860-2870. doi: 10.3934/era.2022145
In this paper, we establish some almost-Schur type inequalities on sub-static manifolds, naturally arising in General Relativity. In particular, our results generalize those in [
[1] | J. Li, C. Xia, An integral formula and its applications on sub-static manifolds, J. Differ. Geom., 113 (2019), 493–518. https://doi.org/10.4310/jdg/1573786972 doi: 10.4310/jdg/1573786972 |
[2] | X. Cheng, An almost-Schur lemma for symmetric $(2, 0)$ tensors and applications, Pac. J. Math., 267 (2014), 325–340. |
[3] | C. De Lellis, P. Topping, Almost-Schur lemma, Calc. Var. Partial Differ. Equ., 43 (2012), 347–354. https://doi.org/10.1007/s00526-011-0413-z doi: 10.1007/s00526-011-0413-z |
[4] | B. Chow, P. Lu, L. Ni, Hamilton's Ricci Flow, Lectures in Contemporary Mathematics 3, Science Press, American Mathematical Society, 2006. |
[5] | Y. Ge, G. Wang, A new conformal invariant on 3-dimensional manifolds, Adv. Math., 249 (2013), 131–160. https://doi.org/10.1016/j.aim.2013.09.009 doi: 10.1016/j.aim.2013.09.009 |
[6] | Y. Ge, G. Wang, An almost-Schur theorem on 4-dimensional manifolds, Proc. Amer. Math. Soc., 140 (2012), 1041–1044. https://doi.org/10.1090/S0002-9939-2011-11065-7 doi: 10.1090/S0002-9939-2011-11065-7 |
[7] | X. Cheng, A generalization of almost-Schur lemma for closed Riemannian manifolds, Ann. Glob. Anal. Geom., 43 (2013), 153–160. https://doi.org/10.1007/s10455-012-9339-8 doi: 10.1007/s10455-012-9339-8 |
[8] | E. R. Barbosa, A note on the almost-Schur lemma on 4-dimensional Riemannian closed manifold, Proc. Amer. Math. Soc., 140 (2012), 4319–4322. https://doi.org/10.1090/S0002-9939-2012-11255-9 doi: 10.1090/S0002-9939-2012-11255-9 |
[9] | P. T. Ho, Almost Schur lemma for manifolds with boundary, Differ. Geom. Appl., 32 (2014), 97–112. https://doi.org/10.1016/j.difgeo.2013.11.006 doi: 10.1016/j.difgeo.2013.11.006 |
[10] | K.-K. Kwong, On an Inequality of Andrews, De Lellis, and Topping, J. Geom. Anal., 25 (2013), 108–121. |
[11] | Y. Ge, G. Wang, C. Xia, On problems related to an inequality of De Lellis and Topping, Int. Math. Res. Not., 2013 (2012), 4798–4818. https://doi.org/10.1093/imrn/rns196 doi: 10.1093/imrn/rns196 |
[12] | D. Perez, On nearly umbilical hypersurfaces, Ph.D thesis, 2011. |
[13] | J. Wu, De Lellis-Topping inequalities for smooth metric measure spaces, Geom. Dedicata, 169 (2014), 273–281. https://doi.org/10.1007/s10711-013-9855-0 doi: 10.1007/s10711-013-9855-0 |
[14] | G. Y. Huang, F. Q. Zeng, De Lellis-Topping type inequalities for $f$-Laplacians, Studia Math., 232 (2016), 189–199. https://doi.org/10.4064/sm8236-4-2016 doi: 10.4064/sm8236-4-2016 |
[15] | A. Freitas, M. Santos, Some Almost-Schur type inequalities for $k$-Bakry-Emery Ricci tensor, Differ. Geom. Appl., 66 (2019), 82–92. https://doi.org/10.1016/j.difgeo.2019.05.009 doi: 10.1016/j.difgeo.2019.05.009 |
[16] | S. Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci., 117 (2013), 247–269. https://doi.org/10.1007/s10240-012-0047-5 doi: 10.1007/s10240-012-0047-5 |
[17] | M.-T. Wang, Y.-K. Wang, X. Zhang, Minkowski formulae and Alexandrov theorems in spacetime, J. Differ. Geom., 105 (2017), 249–290. https://doi.org/10.4310/jdg/1486522815 doi: 10.4310/jdg/1486522815 |
[18] | S. Borghini, On the characterization of static spacetimes with positive cosmological constant, Ph.D thesis, Scuola Normale Superiore, 2018. |
[19] | M. Fogagnolo, A. Pinamonti, New integral estimates in substatic Riemannian manifolds and the Alexandrov theorem, preprint, arXiv: math/2105.04672v1. |
[20] | A. Freitas, R. Valos, The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: conservation identities and their applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 1703–1724. |
[21] | R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differ. Geom., 8 (1973), 465–477. https://doi.org/10.4310/jdg/1214431802 doi: 10.4310/jdg/1214431802 |
[22] | J. A. Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., 101 (2000), 283–316. |