In the present paper, we prove the existence of smooth solutions to a $ L_p $ Aleksandrov problem for Codazzi tensor with a log-convex measure in compact Riemannian manifolds $ (M, g) $ with positive constant sectional curvature under suitable conditions. Our proof is based on the solvability of a Monge-Ampère equation on $ (M, g) $ via the method of continuity whose crucial factor is the a priori bounds of smooth solutions to the Monge-Ampère equation mentioned above. It is worth mentioning that our result can be seen as an extension of the classical $ L_p $ Aleksandrov problem in Euclidian space to the frame of Riemannian manifolds with weighted measures and that our result can also be seen as some attempts to get some new results on geometric analysis for Codazzi tensor.
Citation: Zhengmao Chen. A priori bounds and existence of smooth solutions to a $ L_p $ Aleksandrov problem for Codazzi tensor with log-convex measure[J]. Electronic Research Archive, 2023, 31(2): 840-859. doi: 10.3934/era.2023042
In the present paper, we prove the existence of smooth solutions to a $ L_p $ Aleksandrov problem for Codazzi tensor with a log-convex measure in compact Riemannian manifolds $ (M, g) $ with positive constant sectional curvature under suitable conditions. Our proof is based on the solvability of a Monge-Ampère equation on $ (M, g) $ via the method of continuity whose crucial factor is the a priori bounds of smooth solutions to the Monge-Ampère equation mentioned above. It is worth mentioning that our result can be seen as an extension of the classical $ L_p $ Aleksandrov problem in Euclidian space to the frame of Riemannian manifolds with weighted measures and that our result can also be seen as some attempts to get some new results on geometric analysis for Codazzi tensor.
[1] | S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. |
[2] | W. Fenchel, On total curvatures of Riemannian manifolds: I, J. London Math. Soc., 15 (1940), 15–22. https://doi.org/10.1112/jlms/s1-15.1.15 doi: 10.1112/jlms/s1-15.1.15 |
[3] | C. B. Allendoerfer, The Euler number of a Riemann manifold, Am. J. Math., 62 (1940), 243–248. https://doi.org/10.2307/2371450 doi: 10.2307/2371450 |
[4] | C. B. Allendoerfer, A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Am. Math. Soc., 53 (1943), 101–129. https://doi.org/10.2307/1990134 doi: 10.2307/1990134 |
[5] | S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. Math., 45 (1944), 747–752. https://doi.org/10.2307/1969302 doi: 10.2307/1969302 |
[6] | S. S. Chern, On the kinematic formula in the Euclidean space of $n$ dimensions, Am. J. Math., 74 (1952), 227–236. https://doi.org/10.2307/2372080 doi: 10.2307/2372080 |
[7] | S. S. Chern, R. K. Lashof, On the total curvature of immersed manifolds, Am. J. Math., 79 (1957), 306–318. https://doi.org/10.2307/2372684 doi: 10.2307/2372684 |
[8] | H. Weyl, On the volume of tubes, Am. J. Math., 61 (1939), 461–472. https://doi.org/10.1215/ijm/1256065421 doi: 10.1215/ijm/1256065421 |
[9] | H. Federer, Curvature measures, Trans. Am. Math. Soc., 93 (1959), 418–491. https://doi.org/10.1090/S0002-9947-1959-0110078-1 doi: 10.1090/S0002-9947-1959-0110078-1 |
[10] | R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 2014. |
[11] | V. I. Oliker, Hypersurfaces in $\mathbb{R}^{n+1}$ with prescribed Gaussian curvature and related equations of Monge-Ampère type, Commun. Partial Differ. Equations, 9 (1984), 807–838. https://doi.org/10.1080/03605308408820348 doi: 10.1080/03605308408820348 |
[12] | V. I. Oliker, The problem of embedding $\mathbb{S}^n$ into $\mathbb{R}^{n+1}$ with prescribed Gauss curvature and its solution by variational methods, Trans. Am. Math. Soc., 295 (1986), 291–303. https://doi.org/10.1090/S0002-9947-1986-0831200-1 doi: 10.1090/S0002-9947-1986-0831200-1 |
[13] | V. Oliker, Embedding $\mathbb{S}^n$ into $\mathbb{R}^{n+1}$ with given integral Gauss curvature and optimal mass transport on $\mathbb{S}^n$, Adv. Math., 213 (2007), 600–620. https://doi.org/10.1016/j.aim.2007.01.005 doi: 10.1016/j.aim.2007.01.005 |
[14] | A. D. Alexandrov, A. D. Alexandrov Selected Works, Part Ⅱ. Intrinsic Geometry of Convex Surfaces, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[15] | A. D. Alexandrov, Convex Polyhedra, Springer-Verlag, Berlin, 2005. |
[16] | J. I. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer-Verlag, Berlin, 1994. |
[17] | P. Guan, J. Li, Y. Li, Hypersurfaces of prescribed curvature measure, Duke Math. J., 161 (2012), 1927–1942. https://doi.org/10.1215/00127094-1645550 doi: 10.1215/00127094-1645550 |
[18] | A. V. Pogorelov, The Minkowski Multidimensional Problem, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. |
[19] | A. Treibergs, Bounds for hyperspheres of prescribed Gaussian curvature, J. Differ. Geom., 31 (1990), 913–926. https://doi.org/10.4310/jdg/1214444638 doi: 10.4310/jdg/1214444638 |
[20] | P. Guan, Y. Li, $C^{1, 1}$ estimates for solutions of a problem of Alexandrov, Commun. Pure Appl. Math., 50 (1997), 789–811. https://doi.org/0010-3640/97/080789-23 |
[21] | Y. Huang, E. Lutwak, D.Yang, G. Zhang, The $L_p$-Aleksandrov problem for $L_p$-integral curvature, J. Differ, Geom., 110 (2018), 1–29. https://doi.org/10.4310/jdg/1536285625 doi: 10.4310/jdg/1536285625 |
[22] | B. Klartag, V. D. Milman, Geometry of log-concave functions and measures, Geom. Dedicata, 112 (2005), 169–182. https://doi.org/10.1007/s10711-004-2462-3 doi: 10.1007/s10711-004-2462-3 |
[23] | V. I. Bogachev, Gaussian Measures, American Mathematical Society, Providence, RI, 1998. |
[24] | M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, Berlin, 1991. |
[25] | M. Ledoux, Isoperimetry and Gaussian analysis, in Lectures on Probability Theory and Statistics (Saint-Flour, 1994), 165–294, Springer, Berlin, 1996. |
[26] | M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXIII, 120–216, Springer-Verlag, Berlin, 1999. |
[27] | A. Colesanti, Log-concave functions, in Convexity and concentration, Springer, New York, 2017. |
[28] | L. Rotem, Support functions and mean width for $\alpha$-concave functions, Adv. Math., 243 (2013), 168–186. https://doi.org/10.1016/j.aim.2013.03.023 doi: 10.1016/j.aim.2013.03.023 |
[29] | L. Rotem, Surface area measures of log-concave functions, J. Anal. Math., 147 (2022), 373–400. https://doi.org/10.1007/s11854-022-0227-2 doi: 10.1007/s11854-022-0227-2 |
[30] | B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., 200 (2015), 149–200. https://doi.org/10.1007/s00222-014-0532-1 doi: 10.1007/s00222-014-0532-1 |
[31] | D. Cordero-Erausquin, B. Klartag, Moment measures, J. Funct. Anal., 268 (2015), 3834–3866. https://doi.org/10.1016/j.jfa.2015.04.001 doi: 10.1016/j.jfa.2015.04.001 |
[32] | Y. Huang, D. Xi, Y. Zhao, The Minkowski problem in the Gaussian probability space, Adv. Math., 385 (2021). https://doi.org/10.1016/j.aim.2021.107769. doi: 10.1016/j.aim.2021.107769 |
[33] | J. Liu, The $L_p$-Gaussian Minkowski problem, Calculus Var. Partial Differ. Equations, 61 (2022). https://doi.org/10.1007/s00526-021-02141-z. doi: 10.1007/s00526-021-02141-z |
[34] | N. Fang, S. Xing, D. Ye, Geometry of log-concave functions: the $L_p$ Asplund sum and the $L_p$ Minkowski problem, Calculus Var. Partial Differ. Equations, 61 (2022). https://doi.org/10.1007/s00526-021-02155-7. doi: 10.1007/s00526-021-02155-7 |
[35] | C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30 (1975), 207–216. https://doi.org/10.1007/BF01425510 doi: 10.1007/BF01425510 |
[36] | H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., 22 (1976), 366–389. https://doi.org/10.1016/0022-1236(76)90004-5 doi: 10.1016/0022-1236(76)90004-5 |
[37] | R. J. Gardner, A. Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Am. Math. Soc., 362 (2010), 5333–5353. https://doi.org/10.1090/S0002-9947-2010-04891-3 doi: 10.1090/S0002-9947-2010-04891-3 |
[38] | A. Colesanti, I. Fragalà, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math., 244 (2013), 708–749. https://doi.org/10.1016/j.aim.2013.05.015 doi: 10.1016/j.aim.2013.05.015 |
[39] | G. R. Chambers, Proof of the log-convex density conjecture, J. Eur. Math. Soc. (JEMS), 21 (2019), 2301–2332. https://doi.org/10.4171/JEMS/885 doi: 10.4171/JEMS/885 |
[40] | F. Morgan, The Log-Convex Density Conjecture, http://sites.williams.edu/Morgan/2010/04/03/the-log-convex-density-conjecture |
[41] | C. Rosales, A Cañete, V. Bayle, F. Morgan, On the isoperimetric problem in Euclidean space with density, Calculus Var. Partial Differ. Equations, 31 (2008), 27–46. https://doi.org/10.1007/s00526-007-0104-y doi: 10.1007/s00526-007-0104-y |
[42] | A. Figalli, F. Maggi, On the isoperimetric problem for radial log-convex densities, Calculus Var. Partial Differ. Equations, 48 (2013), 447–489. https://doi.org/10.1007/s00526-012-0557-5 doi: 10.1007/s00526-012-0557-5 |
[43] | F. Morgan, A. Pratelli, Existence of isoperimetric regions in $\mathbb{R}^n$ with density, Ann. Global Anal. Geom., 43 (2013), 331–365. https://doi.org/10.1007/s10455-012-9348-7 doi: 10.1007/s10455-012-9348-7 |
[44] | R. L. Bishop, S. I. Goldberg, Tensor Analysis on Manifolds, Dover Publications, Inc., New York, 1980. |
[45] | J. C. H. Gerretsen, Lectures on Tensor Calculus and Differential Geometry, P. Noordhoff N. V., Groningen 1962. |
[46] | V. I. Oliker, U. Simon, Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature, J. Reine Angew. Math., 342 (1983), 35–C65. https://doi.org/10.1515/crll.1983.342.35 doi: 10.1515/crll.1983.342.35 |
[47] | R. S. Palais, Seminar on the Atiyah-Singer Index Theorem, Princeton University Press, Princeton, N. J. 1965. |
[48] | S. S. Chern, J. Simons, Characteristic forms and geometric invariants, Ann. Math., 99 (1974), 48–69. https://doi.org/10.2307/1971013 doi: 10.2307/1971013 |
[49] | M. Atiyah, The Geometry and Physics of Knots, Cambridge University Press, Cambridge, 1990. |
[50] | P. Shanahan, The Atiyah-Singer Index Theorem-An Introduction, Springer, Berlin, 1978. |
[51] | A. Mukherjee, Atiyah-Singer Index Theorem-An Introduction, Texts and Readings in Mathematics, Hindustan Book Agency, New Delhi, 2013. |
[52] | J. D. Moore, Lectures on Seiberg-Witten Invariants, Springer-Verlag, Berlin, 2001. |
[53] | P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Second edition, CRC Press, Boca Raton, FL, 1995. |
[54] | D. S. Freed, The Atiyah-Singer index theorem, Bull. Am. Math. Soc. (N.S.), 58 (2021), 517–566. https://doi.org/10.1090/bull/1747 doi: 10.1090/bull/1747 |
[55] | V. K. Patodi, An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds, J. Differ. Geom., 5 (1971), 251–283. https://doi.org/10.4310/jdg/1214429991 doi: 10.4310/jdg/1214429991 |
[56] | J. J. Duistermaat, The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator, Birkhäuser/Springer, New York, 2011. |
[57] | M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology, 23 (1984), 1–28. https://doi.org/10.1016/0040-9383(84)90021-1 doi: 10.1016/0040-9383(84)90021-1 |
[58] | Y. Karshon, S. Tolman, The moment map and line bundles over presymplectic toric manifolds, J. Differ. Geom., 38 (1993), 465–484. https://doi.org/10.4310/jdg/1214454478 doi: 10.4310/jdg/1214454478 |
[59] | S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differ. Geom., 18 (1983), 279–315. https://doi.org/10.4310/jdg/1214437665 doi: 10.4310/jdg/1214437665 |
[60] | S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differ. Geom., 18 (1983), 269–277. https://doi.org/10.4310/jdg/1214437664 doi: 10.4310/jdg/1214437664 |
[61] | S. K. Donaldson, P. B. Kronheimer, The Geometry of Four-Manifolds, The Clarendon Press, Oxford University Press, New York, 1990. |
[62] | M. Abreu, Kähler geometry of toric manifolds in symplectic coordinates, in Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001), 2003. |
[63] | M. Grossberg, Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J., 76 (1994) 23–58. https://doi.org/10.1215/S0012-7094-94-07602-3 doi: 10.1215/S0012-7094-94-07602-3 |
[64] | C. P. Boyer, D. M. J. Calderbank, C. W. Tønnesen-Friedman, The Kähler geometry of Bott manifolds, Adv. Math., 350 (2019), 1–62. https://doi.org/10.1016/j.aim.2019.04.042 doi: 10.1016/j.aim.2019.04.042 |
[65] | A. O. Akdemir, A. Karaoglan, M. A. Ragusa, E. Set, Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/1055434 doi: 10.1155/2021/1055434 |
[66] | G. Amirbostaghi, M. Asadi, M. R. Mardanbeigi, $m$-convex structure on $b$-metric spaces, Filomat, 35 (2021), 4765–4776. https://doi.org/10.2298/FIL2114765A doi: 10.2298/FIL2114765A |
[67] | S. S. Dragomir, New inequalities of Hermite-Hadamard type for log-convex functions, Khayyam J. Math., 3 (2017), 98–115. https://doi.org/10.22034/KJM.2017.47458 doi: 10.22034/KJM.2017.47458 |
[68] | H. Fu, Y. Peng, T. Du, Some inequalities for multiplicative tempered fractional integrals involving the $\lambda$-incomplete gamma functions, AIMS Math., 7 (2021), 7456–7478. https://doi.org/10.3934/math.2021436 doi: 10.3934/math.2021436 |
[69] | P. Guan, X. N. Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math., 151 (2003), 553–577. https://doi.org/10.1007/s00222-002-0259-2 doi: 10.1007/s00222-002-0259-2 |
[70] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[71] | B. Guan, P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. Math., 156 (2002), 655–673. https://doi.org/10.2307/3597202 doi: 10.2307/3597202 |