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Abstract: In the present paper, we prove the existence of smooth solutions to a Lp Aleksandrov
problem for Codazzi tensor with a log-convex measure in compact Riemannian manifolds (M, g) with
positive constant sectional curvature under suitable conditions. Our proof is based on the solvability of
a Monge-Ampère equation on (M, g) via the method of continuity whose crucial factor is the a priori
bounds of smooth solutions to the Monge-Ampère equation mentioned above. It is worth mentioning
that our result can be seen as an extension of the classical Lp Aleksandrov problem in Euclidian space
to the frame of Riemannian manifolds with weighted measures and that our result can also be seen as
some attempts to get some new results on geometric analysis for Codazzi tensor.
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1. Introduction

Let (M, g) be a n-dimensional Riemannian manifolds. In the present paper, we focus on the follow-
ing Monge-Ampère equation on compact Riemannian manifolds (M, g) without boundary:

S 1−pe−φ(ρ2) det(S i j + gi jS )√
det gi j

= ϕ(z), (1.1)

for any z ∈ M where ρ2 = gi jS iS j + S 2 and S i j + gi jS is a (0, 2) type Codazzi tensor.
An equivalent form of (1.1) is

S 1−pe−φ(ρ2)σn

√
det gi jdz = ϕ(z)dz, (1.2)

where σn = λ1λ2 · · · λn and {λl}
n
l=1 is a solution sequence to the following algebraic equation,

det(S i j + gi jS − λgi j) = 0. (1.3)
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Noting that the volume element of Riemannian manifold is dV =
√

det gi jdz, we get

S 1−pe−φ(ρ2)σndV = ϕ(z)dz. (1.4)

The left-side of (1.2) is called the density of p-integral Gaussian curvature measure for the log-convex
measure e−φ(ρ2)dx for Codazzi tensor in the present paper.

In particular, if M = S2, p = 1, φ ≡ 0 and S is the support function of hypersurface N ⊆ R3, the
second fundamental form (hi j)2×2 of the hypersurface N is given as

hi j = S i j + gi jS (1.5)

for any fixed i, j ∈ {1, 2} where S i j is the covariant derivation of S of second order. Then the left hand
side of (1.4) becomes

σ2dV (1.6)

which is associated with the well-known Gauss-Bonnet formula for 2-dimensional Riemannian sub-
manifold without boundary, see pp 358 of Kobayashi and Nomizu [1].

Lemma A.1(Gauss-Bonnet formula( [1])). Let N ⊆ R3 be an orientable, compact, smooth 2-
dimensional submanifold without boundary. Then,∫

N
σ2dV = 2πχ(N) (1.7)

where χ(N) ∈ Z denotes the Euler characteristic number of N.
For any fixed n ≥ 3, one of the geometric interests for the measure σndV is the generalization

of classical Gauss-Bonnet formula in higher dimensional space, see Fenchel [2], Allendoerfer [3],
Allendoerfer and Weil [4], Chern [5, 6], Chern and Lasf [7] and so on.

Another geometric interest is to the measure σndV in the well-known Steiner-Weyl formula, see
Weyl [8], Federer [9], Chern [6], Schneider [10] and so on.

Since the measure σndV has its geometric origin, and therefore it is natural to get an intrinsic
construction of the measure σndV . In polar coordinates, one can formulate the measure σndV as
follows: ∫

ω

σndV =
∫
νN (rN (ω))

dξ (1.8)

for any Borel set ω ⊆ Sn, where νN and rN are the normal mapping and radial mapping of the hyper-
surface N,

ρN(ξ) = max{λ ≥ 0 : λξ ∈ N}, ∀ξ ∈ Sn, (1.9)

and
rN(ξ) = ρN(ξ)ξ, ∀ξ ∈ Sn, (1.10)

see Oliker [11–13] or Schneider [10]. This observation led Aleksandrov to pose the following classical
Aleksandrov problem, see Aleksandrov [14, 15], Bakelman [16] or Guan, Li and Li [17].

Problem A.2 (The classical Aleksandrov problem). For any fixed n ≥ 1, given a Borel measures
µ which is supported on the unit sphere Sn, finds a convex hypersurface N ⊆ Rn+1 such that∫

νN (rN (ω))
dξ = µ(ω) (1.11)
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for any Borel set ω ⊆ Sn where dξ, νN and rN are the standard n-dimensional spherical Lebesgue
measure, normal mapping and radial mapping of the hypersurface N.

Aleksandrov [14, 15] solved Problem A.2. via the mapping argument which is a kind of method
of continuity, see also Bakelman [16] or Pogorelov [18]. Later, from the point of view of nonlinear
analysis or PDEs theory, Oliker [11–13] resolved Problem A.2. Moreover, concerning the regularity or
curvature bounds of the hypersurface, Treibergs [19] and Guan and Li [20] also analyzed the Problem
A.2. Recently, Huang, Lutwak, Yang and Zhang [21] introduced the so-called p-integral Gaussian
curvature measure and posed the Lp Aleksandrov problem which can be stated as follows.

Problem A.3 (Lp Aleksandrov problem ( [21]). For any fixed n ≥ 1 and p ∈ R, given a Borel
measures µ which is supported on the unit sphere Sn, find a convex hypersurface N ⊆ Rn+1 such that∫

νN (rN (ω))
u1−pdξ = µ(ω)) (1.12)

for any Borel set ω ⊆ Sn where dξ, νN , u and rN are the standard spherical Lebesgue measure, normal
mapping, support function and radial mapping of the hypersurface N.

Recently, more and more interesting geometric analysis has been focused on the weighted measure
e−φ(|x|2)dx, see [22–27] and so on [28–34]. It may be interesting to mention that the convexity of φ can
deduce some interesting geometric inequalities for the measure e−φ(|x|2)dx, such as Brunn-Minkowski
inequality, Prékopa-Leindler inequalities or Blaschke-Santaló inequalities, see [10, 35–38].

It is interesting to focus on the geometry of weighted measure e−φ(|x|2)dx without the assumption of
convexity of φ.

If φ is concave, we call the measure e−φ(|x|2)dx a log-convex measure.
One interest in the geometry of log-convex measure e−φ(|x|2)dx is the so-called log-convex density

conjecture in geometric measure theory which can be stated as follows.
Problem A.4 (Log-convex density conjecture). In Rn+1 with a smooth, radial, log-convex density,

balls about the origin provide isoperimetric regions of any given volume.
The Log-convex density conjecture was posed by Brakke and solved by Chambers [39]. More

interesting comments on this topic can be referred to [40–43].
Motivated by these beautiful results mentioned above, the main focus of the present paper is on Lp

Aleksandrov problem for log-convex measure e−φ(|x|2)dx in the frame of Riemannian Geometry.
It is well-known that the main language of Riemannian Geometry is the so-called tensor, see Bishop

and Goldberg [44] or Gerretsen [45]. This leads to our consideration on the problem in tensor spaces.
By the analysis mentioned above, the core concept is the concept of Gaussian curvature. It is easy to see
that the Gaussian curvature of a hypersurface can be calculated by means of the metric and second fun-
damental form of the hypersurface, see Kobayashi and Nomizu [1]. Therefore, to formulate a natural
generalization of the classical Lp Aleksandrov problem in tensor spaces, we need to replace the second
fundamental form by some interesting symmetric tensors and pose a natural generalization of Gauss
curvature. Since the second fundamental form of any hypersurface in a space of constant curvature
satisfies the Codazzi equation, we may say a natural generalization of the second fundamental form of
the hypersurface is the so-called Codazzi tensor of Riemannian manifolds in higher dimensional tensor
space which is defined as follows.

For any connected smooth n-dimensional Riemannian manifolds (M, g), we let S T2 be the bundle
of smooth symmetric (0, 2) type tensor field over M, the covariant differential in the metric g is denoted

Electronic Research Archive Volume 31, Issue 2, 840–859.



843

by ∇X where X is a vector field from the tangle bundle T M. The so-called Codazzi tensor is defined as
follows:

Definition A.5 (Cadazzi tensor [46]). Let A : M → S T2 be a smooth section. It is called a Codazzi
tensor if A satisfies Codazzi equation,

∇XA(Y,Z) = ∇Y A(X,Z) (1.13)

for any X,Y,Z ∈ T M. The set of Codazzi tensors on M is denoted by Cod(M, g).
In particular, the second fundamental form of any hypersurface in a space of constant curvature is a

Codazzi tensor, see pp. 26 of Kobayashi and Nomizu [1].
Some basic differential geometric theories about the Codazzi tensor are listed as follows, see [46].
Let x : M 7→ Rn+1 be an isometric immersion and assume also that rank A = n at z. Then rank A = n

in some neighborhood U of z. Suppose that ξ is the unit normal vector field over x(U).
Lemma A.6 ( [46]).
(i) Let x : M 7→ Rn+1 be an isometric immersion and ξ be the unit normal vector field over x(U).

Then ”support” function f (ξ) = −(x, ξ) where (·, ·) is the inner product in Rn+1.
(ii) the second order covariant differential of f and the coefficient of the second fundamental form

(bi j)n×n satisfies
bi j = fi j + gi j f . (1.14)

Lemma A.7 ( [46]). Let (M, g) be a Riemannian manifold of constant sectional curvature Ksec

(possibly zero) and A ∈ Cod(M, g). Then for every point on M, there exists a neighborhood V and a
smooth function f : M → R such that in V

(A)i j( f ) = fi j + Ksecgi j f (1.15)

where (A)i j( f ) is the coefficient of A = A( f ). In addition, if M is simply connected then such represen-
tation is available on the entire M. Conversely, on a manifold of constant curvature Ksec, any smooth
function f generates a Codazzi tensor A( f ) via Eq (1.15).

For any f ∈ C∞(M), we let A = (Ai j)n×n be the Codazzi tensor generated by f , that is, Ai j is given
by (1.15). Let

P0
n( f ) =

det( fi j(z) + Ksecgi j f )
det gi j

=
det A
det g

(1.16)

Remark A.8. It is easy to see that P0
n satisfies the following equation

P0
n( f ) = λ1λ2 · · · λn (1.17)

where λ1, λ2, · · · , λn are n solutions to the following equation

det(A − λg) = 0. (1.18)

This means that the geometric meaning of P0
n is that P0

n is a concept of ”Gaussian” curvature for the
quadratic form A.

Oliker and Simon [46] proved the following interesting prescribed Gaussian curvature problem for
Codazzi tensor:
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Theorem A.9 ( [46]). Let (M, g) be a closed Riemannian manifold with constant sectional curvature
Ksec , 0 , and ϕ : M → (0,∞) is a strictly positive C∞ function. If Ksec > 0 suppose also that M is not
isometrically diffeomorphic to the sphere Sn of Rn+1. Then there exists a (unique) function f ∈ C∞(M)
such that is a positive definite Codazzi tensor on M and

P0
n( f ) = ϕ. (1.19)

Suppose the sectional curvature Ksec of M is positive constant, with loss of generality, we may
assume that Ksec = 1. In (1.5), if we replace the standard Lebesgue dx with e−φ(|x|2)dx, the p-integral
Gaussian curvature function of Codazzi tensor with log-convex measure e−φ(|x|2)dx can be defined as
follows:

f 1−pe−φ(ρ2)σn

√
det gi j. (1.20)

Therefore, we let

Pn,p( f ) = P0
n f 1−pe−φ(ρ2)

√
det gi j = f 1−pe−φ(ρ2) det( fi j(z) + gi j f )√

det gi j

(1.21)

and call Pn,p( f ) as p-integral Gaussian curvature function for Codazzi tensor with log-convex measure
e−φ(|x|2)dx.

In the present paper, we focus on Lp Aleksandrov problem for Codazzi tensor with log-convex
measures e−φ(|x|2)dx which is stated as follows:

Problem A.10 (Lp Minkowski problem for Codazzi tensor with log-convex measure). For any
fixed n ≥ 1 and p ∈ R, does there exist a Codazzi tensor A whose sectional curvature is 1 and is
generated by f such that

Pn,p( f ) = ϕ? (1.22)

The main result of the present paper can be stated as follows.
Theorem 1.1. For any fixed n ≥ 1 and p > n + 1, there exist positive constants c, τ and a positive

solution S ∈ C2,τ(M) to the Eq (1.1) satisfying

0 < c−1 ≤ ∥S ∥C2,τ(M) ≤ c < ∞ (1.23)

where τ ∈ (0, 1), c is independent of S provided the following conditions hold.
(A.1.) 0 < ϕ ∈ C4(M), φ is a non-negative, radially symmetric, increasing, smooth and concave

function in R, 0 < ϕ ∈ C4(M) and

∥ϕ∥C4(M) + ∥φ∥C4(0,∞) < ∞.

(A.2.)

lim
t→∞

tn+p−1

eφ(t2)
= 0, lim

t→0

tn+p−1

eφ(t2)
= ∞.

(A.3.) There exists δ4 > 0 such that

min
t∈[a,b]

φ′(t2) + 2φ′′(t2)t2 ≥ δ4 > 0.

for any compact [a, b] ⊆ (0,∞).
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(A.4.)
max
t∈[a,b]

2φ′(t2)t2 < p − n − 1.

for any compact [a, b] ⊆ (0,∞).
Remark 1.2. The main result of the present paper can be seen as an attempt at some new results

on the integral geometry of differential forms which are associated with some interesting invariants
arising in geometry and topology. Apart from the beautiful Gauss-Bonnet Theorem, there are many
famous theorems which link the analysis, topology and geometry, such as Euler-Poincaré characteristic
formula, Riemann-Roch-Hirzebruch-Grothendieck Theorem, Atiyah-Singer index Theorem, Chern-
Simons invariants, see Palais [47], Chern-Simons [48], Atiyah [49], Shanahan [50], Mukherjee [51],
Moore [52], Gilkey [53], Freed [54] and so on. Following some classical ideas of Steiner, Federer and
Chern, it may be interesting to focus on some kinematic formulas for these invariants and consider
analogous geometric problems which prescribe differential forms for these invariants. In particular, in
the frame of Kähler Manifolds or Symplectic Manifolds, some great results on this topic can be referred
to the great works of Patodi [55], Duistermaat [56], Atiyah and Bott [57], Karshon and Tolman [58],
Donaldson [59–61], Abreu [62], Grossberg and Karshonand [63], Boyer, Calderbank and Tønnesen-
Friedman [64] and so on. In our forthcoming study, we will focus on these topics.

Our proof of Theorem 1.1 is based on the well-known continuous method. We let the set of the
positive continuous function on M be C+(M) and

C = {S ∈ C2,τ(M) : (S i j + gi jS )n×n is positive definite}

The main ingredient is the a priori bounds of solutions to the following auxiliary problem for any
S ∈ C:

S 1−pe−φ(ρ2) det(S i j(z) + S (z)gi j)√
det gi j

= tϕ(ξ) + (1 − t)e−φ(1)
√

det gi j (1.24)

for t ∈ [0, 1].
Remark 1.3. It is worth mentioning that without the assumption of convexity of φ, some necessary

geometric inequalities have not been established which does not guarantee the validity of the classical
variational framework for Problem A.10. Therefore, we adopt the well-known continuous method
to solve this problem. Moreover, by the a priori bounds (1.23) of S , we get the compactness of the
solution set and the curvature estimate of the Codazzi tensor which have their independent interests.

Remark 1.4. Just like the case of concavity, log-convexity may be defined in the form of Prékopa-
Leindler inequality: a function (or functional) f : I 7→ R is called log-convex if f satisfies the following
condition,

f (tx + (1 − t)y) ≤ f t(x) f 1−t(y) (1.25)

for any t ∈ [0, 1] and x, y ∈ I. The former case can be referred to pp. 369–374 of Schneider [10].
Some inequalities for log-convex functions (or functionals) have been analyzed in [65–68] and so on.
It may be worth mentioning that Klartag [22] and Rotem [28] introduced some geometric notions for
log-concave or more general α-concave functions and measures, such as the support function and mean
width. Motivated by these interesting results, it may be interesting to introduce similar notions and get
more geometric analysis for log-convex measures and this will also be a topic of our future study.

The remaining part of this paper is arranged as follows: In Section 2, we prove the a priori bounds
of S . In Section 3, we prove Theorem 1.1.
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2. A priori bounds of S

In this section, we consider the a priori bounds of solutions to the following equation on Riemannian
manifolds (M, g):

S 1−pe−φ(ρ2) det(S i j + gi jS )√
det gi j

= ϕ(ξ) (2.1)

where ρ2 = |∇S |2 + S 2 and the following conditions hold.
(A.1.) 0 < ϕ ∈ C4(M), φ is a non-negative, radially symmetric, increasing, smooth and convex

function in R, 0 < ϕ ∈ C4(M) and

∥ϕ∥C4(M) + ∥φ∥C4(0,∞) < ∞.

(A.2.)

lim
t→∞

tn+p−1

eφ(t2)
= 0, lim

t→0

tn+p−1

eφ(t2)
= ∞.

(A.3.) There exist δ4 > 0 such that

min
t∈[a,b]

φ′(t2) + 2φ′′(t2)t2 ≥ δ4 > 0.

for any compact [a, b] ⊆ (0,∞).
We let the set of the positive continuous function on M be C+(M),

C = {S ∈ C2,τ(M) : (S i j + gi jS )n×n is positive definite}

and
C̃ = {u ∈ C2,τ(M) : (ui j)n×n is positive definite}

This main result of this section can be stated as follows,
Theorem 2.0. For any fixed n ≥ 1 and p > n + 1, we let S ∈ C ∩ C+(M) be a solution to (2.1).

Suppose that (A.1) ∼ (A.3) hold. Then there exists a positive constant c, independent of S , such that

0 < c−1 ≤ ∥S ∥C2,τ(M) ≤ c < ∞, (2.2)

where τ ∈ (0, 1).
Now, we divide the proof of Theorem 2.0 into following four steps.
Step (a). For any fixed n ≥ 1 and p > n + 1, we let S ∈ C ∩ C+(M) be a solution to (2.1). Suppose

that (A.1) ∼ (A.3) hold. Then there exists a positive constant c such that

0 < c−1 ≤ S (ξ) ≤ c < ∞ (2.3)

for any z ∈ M.
Proof of Step (a). We consider the following extremal problem,

R = max
z∈M

S (z). (2.4)
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It follows from the compactness of M and the continuity of S that there exists z1 ∈ M such that

R = S (z1). (2.5)

It follows from the Eq (2.1) that at the point z = z1,

0 <
√

det gi j min
z∈M

ϕ(z) ≤
√

det gi jϕ(z1) ≤
Rn+1−p

eφ(R2)
. (2.6)

Combining this and condition (A.1), we can see that there exists a positive constant c > 0 such that

R ≤ c < ∞. (2.7)

We next consider the following extremal problem,

r = min
z∈M

S (z). (2.8)

Adopting a similar argument mentoned above, we also can see that there exists a positive constant
c > 0 such that

r ≥ c > 0. (2.9)

(2.7) and (2.9) yield the desired conclusion of Step (a).
Step (b). For any fixed n ≥ 1 and p > n + 1, we let S ∈ C ∩ C+(M) be a solution to (2.1). Suppose

that (A.1) ∼ (A.3) hold. Then there exists a positive constant c such that

0 ≤ |∇S (z)|2 ≤ c,∀z ∈ M. (2.10)

Proof of Step (b). The proof is based on Maximum Principle. We let

v =
S 2 + |∇S |2

2
=

1
2

(S 2 + Σi jgi jS iS j). (2.11)

Suppose that there exists z0 ∈ M such that

v(z0) = max
z∈M

v(z). (2.12)

Then,
0 = ∇lv = 2(S S l + Σi jgi jS liS j) = 2Σi jg ji(S il + S gil)S j (2.13)

for any fixed l ∈ {1, 2, · · · , n} at the point z0. It follows from Lemma 2.1 that there exists a positive
constant c,

det(S il + S gil) = S p−1ϕ(z)eφ(ρ2) det gil ≥ S p−1ϕ(z)eφ(0) det gil ≥ c0 det gil (2.14)

at the point z = z0 where
c0 = eφ(0) min

z∈M
S p−1(z)ϕ(z) > 0. (2.15)

Noting that g = (gi j)n×n is strictly positive, it follows from (2.14) and (2.15) that the matric (S il+S gil)n×n

is reversible at the point z = z0 and therefore,

S l = 0 (2.16)
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at the point z = z0 for any fixed l ∈ {1, 2, · · · , n} due to (2.13) and the positivity of g. From (2.16), we
can see that

|∇S |2 = gi jS iS j = 0 (2.17)

at the point z = z0. Therefore, it follows from Lemma 2.1 that there exists a positive constant c,
independent of S ,

1
2
|∇S |2(z) ≤ v(z) ≤ v(z0) ≤

1
2

max
z∈M

S (z) ≤ c, (2.18)

for any z ∈ M. This completes the proof of Step (b).
Before getting the higher order estimates of S , we let

ui j = S i j + gi jS , G(ui j) = (det ui j)
1
n (2.19)

and
Ψ(z) = (ψ(z)S p−1eφ(ρ2) det gi j)

1
n . (2.20)

Then, Eq (2.1) becomes
G(ui j) = Ψ. (2.21)

Step (c). For any fixed n ≥ 1 and p > n + 1, we let S ∈ C ∩ C+(M) be a solution to (2.1) and
u ∈ C̃ ∩ C+(M) be a solution to (2.21). Suppose that (A.1) ∼ (A.3) hold. Then there exists a positive
constant c, independent of S , such that

∆u ≤ c. (2.22)

Proof of Step (c). We let H =
∑

i uii. Suppose that H achieves it maximum at the point z = z0.
Without loss of generality, we may (Hi j)n×n is diagonal at the point z = z0. Therefore, at the point
z = z0,

∇H = 0, (2.23)

and (Hi j)n×n is non-positive. We let

Gi j =
∂G

∂ui j
,Gi j,rs =

∂2G

∂ui j∂urs
. (2.24)

for any fixed i, j, s, t ∈ {1, 2, · · · , n}. Therefore, at the point z = z0,

0 ≥ Σi jGi jHi j = ΣiαGiiHii. (2.25)

By the commutator identity, we have,

Hii = ∆uii − nuii + H. (2.26)

Putting (2.25) into (2.26), we get

0 ≥ ΣiGii∆uii − nΣiGiiuii + HΣiαGii. (2.27)

Taking the α-th partial derivatives on both sides of (2.21) twice for any fixed α ∈ {1, 2, · · · , n}, we
have

Σi jGi jui jα = Ψα,Σi jstGi j,rsui jαursα + Σi jGi j(uαα)i j = Ψαα (2.28)
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for any fixed α ∈ {1, 2, · · · , n}. By the concavity of G, we have

Σi jstαGi j,rsui jαursα ≤ 0. (2.29)

This implies that
ΣiGii∆uii ≥ Σi jGi j∆ui j + Σi jstαGi j,rsui jαursα = ∆Ψ. (2.30)

at the point z = z0. Therefore,
ΣiGii∆uii ≥ ∆Ψ. (2.31)

at the point z = z0. It follows from Newton-MacLaurin inequality that

ΣiGii ≥ 1, (2.32)

see Guan and Ma [69]. Putting (2.31), (2.32) into (2.27), we have, at the point z = z0,

0 ≥ ∆Ψ − nΨ + HΣiGii ≥ ∆Ψ − nΨ + H ≥ ∆Ψ − nΨ. (2.33)

We let
r1 = min

z∈M
ρ2(z),R1 = max

z∈M
ρ2(z). (2.34)

It follows from Lemmas 2.1 and 2.2 that

0 < r1 ≤ R1 < ∞. (2.35)

Now, we claim that at the point z = z0,

∆Ψ

Ψ
− n ≥

2δ4

n
Σi jS 2

i j − c
√

n
√
Σi jS 2

i j − c (2.36)

where δ4 > 0 to be chosen. Indeed, it follows from the definition of Ψ that

logΨ =
log ϕ(ξ)

n
+

p − 1
n

log S
φ(ρ2)

n
+

1
n

log det gi j. (2.37)

Noting ρ2 = |∇S |2 + S 2, for any fixed α ∈ {1, 2, · · · , n}, taking α-th partial derivatives on both sides of
(2.37) twice, we have

Ψα

Ψ
=

1
n

(log ϕ)′ +
p − 1

n
S α +

2
n
φ′(ρ2)(

∑
j

S jS jα + S S α) (2.38)

and

∆Ψ

Ψ
≥ Σα(

Ψαα

Ψ
−
Ψ2
α

Ψ2 ) = Σα(
1
n

(log ϕ)′′ +
p − 1

n
S αα

+
2φ′(ρ2)

n
(Σ jS 2

jα + S jS jαα + S S αα + S 2
α)

+
4
n

(φ′′(ρ2)(Σ jS jS jα + S S α)2)

≜ I1 + I2.

(2.39)
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where

I1 =
2φ′(ρ2)

n
Σ jlS 2

jl +
4
n
φ′′(ρ2)Σl(Σ jS jS jl)2, (2.40)

and

I2 = (log ϕ)′′ +
2
n

(φ′(ρ2) + 2φ′′(ρ2)S 2)|∇S |2 +
1
n

(2φ′(ρ2) + (p − 1))∆S +
2φ′(ρ2)

n
∇S · ∇∆S . (2.41)

We now get some estimates of I2. Since ϕ ∈ C4(M), it follows from Lemmas 2.1 and 2.2 that

(log ϕ)′′ +
2
n

(φ′(ρ2) + 2φ′′(ρ2)S 2)|∇S |2 ≥ −c. (2.42)

By the definition of H, we have,
H = ∆S + nS . (2.43)

Therefore, it follows from Lemma 2.1 and Hölder inequality that

|
1
n

(2φ′(ρ2)S + (p − 1))∆S | = |
1
n

(2φ′(ρ2)S + (p − 1))(H − nS )|

≤ cH + c ≤ c
√

n
√
ΣiS 2

ii + c ≤ c
√

n
√
Σi jS 2

i j + c
(2.44)

for some c which means that

1
n

(2φ′(ρ2)S + (p − 1))∆S ≥ −c
√

n
√
Σi jS 2

i j − c. (2.45)

Moreover, it follows from (2.43), (2.23) and Lemma 2.2 that

2φ′(ρ2)
n
∇S · ∇∆S =

2φ′(ρ2)
n
∇S · ∇(H − nS )

=
2φ′(ρ2)

n
∇S · ∇H − 2φ′(ρ2)|∇S |2 = −2φ′(ρ2)|∇S |2 ≥ −c

(2.46)

at the point z = z0. Therefore, combining (2.42), (2.45) and (2.46), we have,

I2 ≥ −c
√

n
√
Σi jS 2

i j − c (2.47)

at the point z = z0.
Since φ ∈ C2 is concave, we have,

φ′′(ρ2) ≤ 0 (2.48)

for any z ∈ M. Noting that

2Σl(Σ jS jS jl)2 ≤ 2Σl(Σ jS 2
jΣ jS 2

jl) = 2|∇S |2Σ jlS 2
jl ≤ 2ρ2Σ jlS 2

jl. (2.49)

Therefore,

I1 =
2φ′(ρ2)

n
Σ jlS 2

jl +
4
n
φ′′(ρ2)Σl(Σ jS jS jl)2 ≥

2
n

(φ′(ρ2) + 2ρ2φ′′(ρ2))Σ jlS 2
jl. (2.50)
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We let
r1 = min

z∈M
ρ(z),R1 = max

z∈M
ρ(z). (2.51)

It follows from Step (a) and Step (b) that

0 < r1 ≤ R1 < ∞. (2.52)

Therefore, it follows from (A.3) that there exists δ4 > 0 such that

min
z∈M

φ′(ρ2(z)) + 2φ′′(ρ2(z))ρ2(z) ≥ δ4 > 0. (2.53)

Therefore,

I1 ≥
2δ4

n
Σi jS 2

i j. (2.54)

Therefore, (2.47) and (2.54) yield

I1 + I2 ≥
2δ4

n
Σ j,αS 2

jα − c
√

n
√
Σi jS 2

i j − c (2.55)

at the point z = z0. This is the desired inequality (2.36).
It follows from (2.33) and (2.36) that

Σi jS 2
i j ≤ c (2.56)

at the point z = z0. It follows from Hölder inequality that

∆S =
√

n
√
ΣiS 2

ii ≤
√

n
√
Σi jS 2

i j ≤ c (2.57)

at the point z = z0. Combining (2.57), the definition of u and Step (a), it is easy to get the inequality
(2.22) which completes the proof of Step (c).

Step (d). It follows from (2.21) that Eq (2.1) becomes

F (ui j) = 0 (2.58)

provided F (ui j) = G(ui j) − Ψ. We let Fi j =
∂F
∂ui j

. It follows from Step (a), Step (b) and Step (c) that
there exist positive constants λ and Λ, independent of S , such that

1 ≤
Λ

λ
< ∞, (2.59)

and
0 < λ|ζ |2 ≤ Fi jζiζ j ≤ Λ|ζ |

2, (2.60)

for any ζ = (ζ1, ζ2, · · · , ζn) ∈ Rn. That is,
(d.i) (2.58) is elliptic uniformly.
Now, we claim that
(d.ii) F is concave with respect to (ui j)n×n.
It follows from the definition of F that it suffices to prove that G = det

1
n is concave with respect to

(ui j)n×n. Indeed, For any u, v ∈ C and t ∈ [0, 1], we let {δ1
i }

n
i=1 and {δ2

i }
n
i=1 be the eigenvalue sequence of
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(ui j)n×n and (vi j)n×n respectively. Then {tδ1
i + (1− t)δ2

i }
n
i=1 is a eigenvalue sequence of (tui j+ (1− t)vi j)n×n.

Moreover, since (ui j)n×n and (vi j)n×n are convex, we have

δ
j
i ≥ 0 (2.61)

for any fixed i ∈ {1, 2, · · · , n} and j ∈ {1, 2} and therefore,

(
n∏

i=1

(tδ1
i + (1 − t)tδ2

i ))
1
n ≥ t(

n∏
i=1

(δ1
i )

1
n + (1 − t)(

n∏
i=1

(δ2
i ))

1
n (2.62)

for any t ∈ [0, 1]. Combining the definition of G and (2.62), we get

G(tui j + (1 − t)vi j) ≥ tG(ui j) + (1 − t)G(vi j) (2.63)

which proves that G = det
1
n is concave with respect to (ui j)n×n and this completes the proof of the claim.

Then, it follows from (d.i), (d.ii) and Theorem 17.14 of Gilbarg and Trudinger [70] that there exist
τ1 ∈ (0, 1) and positive constant c, independent of S , such that

∥u∥C2,τ1 (M) ≤ c, (2.64)

(see pp. 457–461 of Gilbarg and Trudinger [70]). Therefore there exist τ ∈ (0, 1) and positive constant
c, independent of S , such that

∥S ∥C2,τ(M) ≤ c, (2.65)

This is the desired conclusion of Theorem 2.0.

3. Existence

This section is devoted to the proof of Theorem 1.1.
Motivated by [69, 71] and so on, we consider the following auxiliary problem with a parameter

t ∈ [0, 1],

S 1−pe−φ(ρ2) det(S i j(z) + S (z)gi j)√
det gi j

= tϕ(z) + (1 − t)e−φ(1)
√

det gi j ≜ ft (3.1)

for any z ∈ M where ρ2 = |∇S |2+S 2 = gi jS iS j+S 2, 0 < ϕ ∈ C4(M) and the following conditions hold.
(A.1.) 0 < ϕ ∈ C4(M), φ is a non-negative, radially symmetric, increasing, smooth and convex

function in R, 0 < ϕ ∈ C4(M) and

∥ϕ∥C4(M) + ∥φ∥C4(0,∞) < ∞.

(A.2.)

lim
t→∞

tn+p−1

eφ(t2)
= 0, lim

t→0

tn+p−1

eφ(t2)
= ∞.

(A.3.) There exist δ4 > 0 such that

min
t∈[a,b]

φ′(t2) + 2φ′′(t2)t2 ≥ δ4 > 0.
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for any compact [a, b] ⊆ (0,∞).
(A.4.)

max
t∈[a,b]

2φ′(t2)t2 < p − n − 1.

for any compact [a, b] ⊆ (0,∞).
We let the set of the positive continuous function on the Riemannian manifolds (M, g) be C+(M)

and
C = {S ∈ C2,τ(M) : (S i j + S gi j)n×n is positive definite}

I = {t ∈ [0, 1] : S ∈ C ∩C+(M), (3.1) is solvable.} (3.2)

Since ft is a contious function, independent of z, satisfying

0 < min{eφ(1),min
z∈M

ϕ(z)} ≤ ft(z) ≤ max{eφ(1),max
z∈M

ϕ(z)} < ∞,

for any t ∈ [0, 1] and z ∈ M, adopting some similar arguments in Section 2, we get
Lemma 3.1. For any fixed n ≥ 1, p > n + 1 and t ∈ [0, 1], we let S t ∈ C ∩ C+(M) be a solution to

(3.1). Suppose that (A.1) ∼ (A.3) hold. Then there exists a constant c, independent of t, such that

0 < c−1 ≤ ∥S t∥C2,τ(M) ≤ c,

for any t ∈ [0, 1] and some τ ∈ (0, 1).
As a corollary of Lemma 3.1, we have,
Corollary 3.2. For any fixed n ≥ 1, p > n + 1, we let I is the set defined in (3.2). Suppose that

(A.1) ∼ (A.3) hold. Then I is closed.
Proof. It suffices to show that for any sequence {t j}

∞
j=1 ⊆ I satisfying

t j → t0,

as j→ ∞ for some t0 ∈ [0, 1], we need to prove t0 ∈ I.
We let S j be a solutions of problem (3.1) at t = t j. It follows from the conclusion of Lemma 3.1

that there exists a positive constant c, independent of j such that

∥S j∥C2,τ(M) ≤ c,

it follows from Ascoli-Arzela Theorem that up to a subsequence, there exists a S 0 ∈ C2(M), such that

∥S j − S 0∥C2(M) → 0

as j→ ∞. It is easy to see that
(S j)1−p → (S 0)1−p, ρ j → ρ0 (3.3)

uniformly on M as j → ∞ where (ρ j)2 = (S j)2 + |∇S j|2 for any j ∈ {0, · · · }. Letting j → ∞, we can
see that (t0, S 0) is a solution to the following problem:

S 1−pe−φ(ρ2) det(S i j(ξ) + S gi j)√
det gi j

= tϕ(z) + (1 − t)e−φ(1)
√

det gi j (3.4)
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for any z ∈ M. (3.4) implies that t0 ∈ I. This is the desired conclusion of Corollary 3.2.
Lemma 3.3. For any fixed n ≥ 1, p > n + 1, we let I is the set defined in (3.2). Suppose that

(A.1) ∼ (A.4) hold. Then I is open.
Proof. Suppose that there exists a t̄ ∈ I, it suffices to prove t ∈ I for any t ∈ Bδ(t̄) ∩ [0, 1]. To

achieve this goal, joint with Implicit Function Theorem, we need to analyze the kernel of linearized
equation associated to (3.1). We assume that S̄ is a solution to (3.1) at t = t̄. For any ζ ∈ M, we let

M(S ) = S 1−pe−φ(ρ2)ρn+1 det(S i j(ξ) + S gi j)
det gi j

, ft = tϕ(ξ) + (1 − t)e−φ(1)
√

det gi j, (3.5)

Gt(S ) = M(S ) − ft,M[S̄ ](ζ) =
d
dε

M(S̄ + εζ)|ε=0, (3.6)

and
Gt[S̄ ](ζ) =

d
dε

Gt(S̄ + εζ)|ε=0 =
d
dε

M(S̄ + εζ)|ε=0. (3.7)

By the Eq (3.1), we have
M(S̄ ) = ft. (3.8)

Taking logarithm on both sides of (3.8), since ft is independent of S̄ , we get,

M′[S̄ ](ζ)
M(S̄ )

=
1 − p

S̄
ζ + 2φ′(ρ̄2)(S̄ ζ + ∇S̄ · ∇ζ) + P̄i jB(ζ) (3.9)

where (P̄i j)n×n is the inverse of the matrix (S̄ i j + S̄ gi j)n×n and

B(ζ) = ζi j + ζgi j. (3.10)

We let ζ = S̄ v. Direct Calculation shows that

ζi = S̄ vi + S̄ iv (3.11)

and
ζi j = S̄ vi j + (S̄ iv j + S̄ jvi) + S̄ i jv. (3.12)

Therefore, we get

S̄ ζ + ∇S̄ · ∇ζ = (S̄ 2 + |∇S̄ |2)v + S̄∇S̄ · ∇v = ρ̄2v + S̄∇S̄ · ∇v (3.13)

which implies that

1 − p
S̄

ζ + (2φ′(ρ̄2))(S̄ ζ + ∇S̄ · ∇ζ) = (1 − p + (2φ′(ρ̄2)ρ̄2)v + 2φ′(ρ̄2)S̄∇S̄ · ∇v. (3.14)

It follows from (3.12) and (3.10) that

B(ζ) = S̄ vi j + (S̄ iv j + S̄ jvi) + (S̄ i j + S̄ gi j)v
= S̄ (vi j + gi jv) + (S̄ iv j + S̄ jvi) + (S̄ i j + S̄ gi j)v − S̄ gi jv

(3.15)

and thus,
P̄i jB(ζ) = S̄ P̄i jvi j + 2P̄i jS̄ iv j + nv − S̄ΣiPiv (3.16)
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due to the symmetry of (P̄i j)n×n. Putting (3.14) and (3.16) into (3.9), we have,

G[S̄ ](v) = M[S̄ ](v) = S̄ M(S̄ )P̄i jvi j + 2M(S̄ )P̄i jS̄ jvi + (2φ′(ρ̄2) + (n + 1)ρn−1)M(S̄ )S̄∇S̄ · ∇v

+ (n + 1 − p + (2φ′(ρ̄2)ρ̄2) − S̄ΣiPi jgi j)Mv ≜ ai jvi j + bivi + Nv
(3.17)

where
ai j = S̄ M(S̄ )P̄i j, bi = 2M(S̄ )P̄i jS̄ j − 2φ′(ρ̄2)M(S̄ )S̄ S̄ i (3.18)

and
N = (n + 1 − p + (2φ′(ρ̄2)ρ̄2) − S̄ΣiPi jgi j)M(S̄ ). (3.19)

Since S̄ ,M(S̄ ) > 0, (P̄i j)n×n is positive, we see that (ai j)n×n is positive. It follows from Lemma 3.1 that
bi is bounded. By the condition (A.4.), we have

n + 1 − p + 2φ′(ρ̄2)ρ̄2 < 0. (3.20)

Since M(S̄ ) is positive, we have,
− S̄Σi jPi jgi j)M(S̄ ) < 0. (3.21)

Therefore, it follows from (3.20) and (3.21) we get N < 0. By Strong Maximum Principle for elliptic
equations of second order, we see that

v ≡ 0 (3.22)

(see pp. 35 of Gilbarg and Trudinger [70]) and thus,

ζ ≡ 0 (3.23)

since S̄ > 0. Then by the standard Implicit Function Theorem, for any t ∈ Bδ(t̄) ∩ [0, 1], there exists a
S ∈ C2,τ(M), such that Gt(S ) = 0. This means that t ∈ I and completes the proof of Lemma 3.3.

Final proof of Theorem 1.1. It is easy to see that S ≡ 1 is a solution of (3.1) at t = 0. This means
that I is not-empty. This, together with Corollary 3.2 and Lemma 3.3, implies that I = [0, 1]. Taking
t = 1, we get the proof of Theorem 1.1.
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