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Abstract: In this paper, we establish some almost-Schur type inequalities on sub-static manifolds,
naturally arising in General Relativity. In particular, our results generalize those in [1] of Li-Xia for r-
th mean curvatures of closed sub-static hypersurfaces in space forms and k-scalar curvatures for closed
locally conformally flat sub-static manifolds. Moreover, our results also generalize those of Cheng [2].
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1. Introduction

Let (M, g) be an n-dimensional smooth Riemannian manifold. We denote ∇,∆ and ∇2 the gradient,
Laplacian and Hessian operator on M with respect to g, respectively. Ric and R denote Ricci curvature
and scalar curvature, respectively. An n-dimensional Riemannian manifold (M, g) is called to be Ein-
stein if its traceless Ricci tensor R̊ic = Ric − R

n g is identically zero. The classical Schur’s lemma states
that the scalar curvature of an Einstein manifold of dimension n ≥ 3 must be constant. Recently, De
Lellis and Topping [3] proved (and independently by Andrews, cf. [4, Corollary B. 20]) the following
almost-Schur lemma as they called:

Theorem 1.1. (see [3]) If (M, g) is a closed Riemannian manifold of dimension n ≥ 3, with non-
negative Ricci curvature, then∫

M

(R − R)2 dvg ≤
4n(n − 1)
(n − 2)2

∫
M

∣∣∣∣∣Ric −
R
n

g
∣∣∣∣∣2 dvg, (1.1)

and equivalently, ∫
M

∣∣∣∣∣∣Ric −
R
n

g

∣∣∣∣∣∣
2

dvg ≤
n2

(n − 2)2

∫
M

∣∣∣∣∣Ric −
R
n

g
∣∣∣∣∣2 dvg, (1.2)
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where R denotes the average of R over M. Moreover the equality in (1.1) or (1.2) holds if and only if
M is Einstein.

As it is customary, we say that M is called a closed manifold if it is compact and without boundary.
In the case of dimension n = 3, 4, Ge and Wang [5, 6] proved that Theorem 1.1 holds under the
weaker condition of non-negative scalar curvature. However, as pointed out by De Lellis and Topping
in [3], the coefficient in inequality (1.1) is optimal and the non-negativity of Ricci curvature can not
be removed for n ≥ 5. Generalizing De Lellis and Topping’s results in [3], Cheng [7] proved an
almost-Schur lemma for the closed manifolds with Ricci curvature bounded from below by a negative
constant. That is, she obtained a similar inequality with the coefficient depending on not only the lower
bound of Ricci curvature but also the value of the first non-zero eigenvalue of Laplace operator. Later,
Cheng [2] also generalized her own previous results to a class of symmetric (0, 2)-tensors and gave the
applications for r-th mean curvatures of closed hypersurfaces in space forms and k-scalar curvatures
for closed locally conformally flat manifolds. For the recent research in this direction, see [5, 8–15]
and the references therein.

The aim of the present paper is to extend the above results to the vast context of sub-static manifolds.
Let us provide the rigorous definitions we are going to employ for sub-static manifolds (see [1]).

Definition 1.1. (sub-static) Let (M, g) be a Riemannian manifold endowed with a positive twice differ-
entiable function V . We say that it is sub-static if

(∆V)g − ∇2V + VRic ≥ 0 (1.3)

on the whole of M. In this case, we say that V is the sub-static potential of (M, g).

In addition to the sub-static warped products considered in [16], we mention that complete noncom-
pact manifolds with nonnegative Ricci curvature and without boundary fulfil the assumptions above.
The definition of sub-static Riemannian manifolds comes naturally from and has roots in the study
of static spacetimes in general relativity. The sub-static condition appear more generally in General
Relativity in relation with the so called null convergence condition [17]. Discussing in details the deep
connections with Mathematical General Relativity is far out the scope of this contribution, and so we
refer the interested reader to the comprehensive thesis of Borghini [18] and the references therein. For
the recent research in this direction, see [1, 19, 20] and the references therein.

In this paper, we give new almost-Schur type inequalities for symmetric (0, 2)-tensors on sub-static
manifolds. Applying such unified inequalities for symmetric (0, 2)-tensors, we may obtain inequalities
besides those in the papers mentioned above. For this purpose, we prove the following.

Theorem 1.2. Let V be a positive twice differentiable function on an n-dimensional closed Riemannian
manifold (Mn, g) (n ≥ 3) with

(∆V)g − ∇2V + VRic ≥ −(n − 1)Kg,

where K is a nonnegative constant. Let T be a symmetric (0, 2)-tensor satisfying divT = c∇B, where
B = trT denotes its trace and c is a constant. Then

(nc − 1)2
∫
M

V(B − B
V

)2 dvg ≤ n(n − 1)
(
1 +

nK
λ1

) ∫
M

V
∣∣∣∣∣T − B

n
g
∣∣∣∣∣2 dvg (1.4)
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and, equivalently,

(nc − 1)2
∫
M

V

∣∣∣∣∣∣∣T − B
V

n
g

∣∣∣∣∣∣∣
2

dvg

≤

[
(nc − 1)2 + (n − 1)

(
1 +

nK
λ1

)] ∫
M

V
∣∣∣∣∣T − B

n
g
∣∣∣∣∣2 dvg,

(1.5)

where B
V
=

∫
M

BV dvg∫
M

V dvg
and λ1 denotes the first nonzero eigenvalue of problem ∆ f − ∆V

V f = −λ1
f
V on

(Mn, g).
Assume (∆V)g − ∇2V + VRic > 0 on (Mn, g). If c , 1

n , statements (i), (ii) and (iii) below are
equivalent. If c = 1

n , then (i) and (ii) are equivalent.
(i) Equality holds in (1.4) and (1.5).
(ii) T = B

n g on (Mn, g).

(iii) T = B
V

n g on (Mn, g).

Remark 1.1. We define L f = div
(
V2∇

(
f
V

))
. It is easy to check that

div
(
V2∇

(
f
V

))
= V∆ f − f∆V.

Hence, the problem ∆ f − ∆V
V f = −λ f

V is equivalent to the eigenvalue problem of L f = −λ f . In partic-
ular, if V = 1, then Theorem 1.2 reduces to [2, Theorem 1.7]. Hence, Theorem 1.2 is a generalization
of Cheng’s Theorem. On the other hand, if K = 0, then (Mn, g) appears as a sub-static manifold and
we obtain some almost-Schur type inequalities for general tensors on sub-static manifolds.

We now focus on using Theorem 1.2 to obtain two other applications on closed sub-static manifolds
as follows.

As the first application of Theorem 1.2, we give an almost-Schur type inequality for r-th mean
curvatures of closed sub-static hypersurfaces in space forms. Let us first recall the definition of the r-th
mean curvatures, which was first introduced by Reilly [21] and has been intensively studied by many
mathematicians. Assume (Σ, g) is a connected oriented closed sub-static hypersurface immersed in a
space form with induced metric g. Associated with the second fundamental form A of Σ, we have r-th
mean curvatures Hr of Σ and the Newton transformations Pr, 0 ≤ r ≤ n (see their definition and related
notation in Section 3).

In Section 3, we prove the following.

Theorem 1.3. Let (Nn+1, g̃) be a space form, n ≥ 3. Assume that (Σ, g) is a smooth connected oriented
closed sub-static hypersurface immersed in N with induced metric g and V is the sub-static potential
of (Σ, g). Then, for 2 ≤ r ≤ n,

(n − r)2
∫
Σ

V(sr − sV
r )2 dvg ≤ n(n − 1)

∫
Σ

V
∣∣∣∣∣Pr −

(n − r)sr

n
g
∣∣∣∣∣2 dvg, (1.6)
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where sr = trPr =
n!

r!(n−r)! Hr and sV
r =

∫
M

srV dvg∫
M

V dvg
. Equivalently,

∫
Σ

V

∣∣∣∣∣∣Pr −
(n − r)sV

r

n
g

∣∣∣∣∣∣
2

dvg ≤ n
∫
Σ

V
∣∣∣∣∣Pr −

(n − r)sr

n
g
∣∣∣∣∣2 dvg. (1.7)

If the strict sub-static inequality holds on (Σ, g), then statements (i), (ii) and (iii) below are equiva-
lent.

(i) Equality holds in (1.6) and (1.7).
(ii) Pr =

(n−r)sr
n g on (Σ, g).

(iii) Pr =
(n−r)sV

r
n g on (Σ, g).

Remark 1.2. If V = 1, Theorem 1.3 becomes Theorem 1.10 of Cheng in [2]. If r = 1, P1 = s1I − A =
HI − A. So (1.6) turns into∫

Σ

V(H − H
V

)2 dvg ≤
n

n − 1

∫
Σ

V
∣∣∣∣∣A − H

n
g
∣∣∣∣∣2 dvg. (1.8)

Equation (1.8) was proved in [1, Theorem 1.9], if Σ is a horo-convex (resp. convex) hypersurface in
the hyperbolic space Hn (resp. the hemi-sphere S+n ). This is because a horo-convex (resp. convex)
hypersurface in Hn (resp. Sn

+) is a closed sub-static manifold. Hence, Theorem 1.3 is a generalization
of Li and Xia’s Theorem 1.9 in [1].

As the second application of Theorem 1.2, we give an almost-Schur type inequality for the k-scalar
curvatures of locally conformally flat closed sub-static manifolds (see the definition in Section 4).
Since they were first introduced in [22], k-scalar curvatures have been much studied. When M is a
locally conformally flat closed sub-static manifold, we obtain an almost-Schur type lemma for k-scalar
curvatures, k ≥ 2, as follows.

Theorem 1.4. Let (Mn, g) be a closed locally conformally flat sub-static Riemannian manifold of di-
mension n ≥ 3 and V is the sub-static potential of (Mn, g). Then, for 2 ≤ k ≤ n, the k-scalar curvature
σk(S) and the Newton transformation Tk associated with the Schouten tensor S satisfy

(n − k)2
∫
M

V(σk(S) − σV
k (S))2 dvg ≤ n(n − 1)

∫
M

V
∣∣∣∣∣Tk −

(n − k)σk(S)
n

g
∣∣∣∣∣2 dvg (1.9)

where σV
k (S) =

∫
M
σk(S)V dvg∫
M

V dvg
. Equivalently,

∫
M

V

∣∣∣∣∣∣Tk −
(n − k)σV

k (S)
n

g

∣∣∣∣∣∣
2

dvg ≤ n
∫
M

V
∣∣∣∣∣Tk −

(n − k)σk(S)
n

g
∣∣∣∣∣2 dvg. (1.10)

If the strict sub-static inequality holds on (Mn, g), then statements (i), (ii) and (iii) below are equiv-
alent.

(i) Equality holds in (1.9) and (1.10).
(ii) Tk =

(n−k)σk(S)
n g on (Mn, g).

(iii) Tk =
(n−k)σV

k (S)
n g on (Mn, g).
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Remark 1.3. If V = 1, Theorem 1.4 becomes Theorem 1.11 of Cheng in [2] with K = 0. Hence,
Theorem 1.4 is a generalization of Cheng’s Theorem.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.2. In Section 3,
we prove Theorem 1.3 by applying Theorem 1.2. In Section 4, we prove Theorem 1.4 by applying
Theorem 1.2.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.
First we give some notation. Assume (M, g) is an n-dimensional closed Riemannian manifold. Let

∇ denote the Levi-Civita connection on (M, g) and also the induced connections on tensor bundles
on M. Let T be a symmetric (0, 2)-tensor field on M and denotes by B the trace of T . Denote by

B
V
=

∫
M

BV dvg∫
M

V dvg
and set T̊ = T − B

n g.

For the proof of Theorem 1.2, the following lemmas will be used.

Lemma 2.1. ( [1, Theorem 1.1]) Let (Mn, g) be an n-dimensional closed Riemannian manifold. Let V
be a positive twice differentiable function on (Mn, g). Then for any f ∈ C∞(M), the following integral
identity holds: ∫

M

V

(∆ f −
∆V
V

f
)2

−

∣∣∣∣∣∣∇2 f −
∇2V

V
f

∣∣∣∣∣∣2
 dvg

=

∫
M

((∆V)g − ∇2V + VRic)
(
∇ f −

∇V
V

f ,∇ f −
∇V
V

f
)

dvg.

(2.1)

Proof of Theorem 1.2. We note that if c = 1
n , then

(nc − 1)2
∫
M

V(B − B
V

)2 dvg = 0

and inequality (1.4) or (1.5) follows trivially. Hence, it suffices to prove the case c , 1
n .

Now, let us suppose that c , 1
n . By the assumption divT = c∇B,

divT̊ = div
(
T −

B
n

g
)
=

nc − 1
n
∇B. (2.2)

We let f : M → R be the unique solution to

∆ f −
∆V
V

f = B − B
V
, on M. (2.3)

The existence and uniqueness of Eq (2.3) is due to the Fredholm alternative (for detail, see Remark 1.1
or page 512 in [1]).

For notation simplicity, we denote by

Ci j = fi j −
f
V

Vi j, tr(Ci j) = ∆ f −
∆V
V

f , C̊i j = Ci j −
tr(Ci j)

n
gi j
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under the local coordinates {xi} on M, where fi j and Vi j represent the Hessian components of f and V ,
respectively. Moreover, we have

tr(C̊i j) = gi jC̊i j = 0.

Then by using (2.3) and the divergence theorem, we have∫
M

V(B − B
V

)2 dvg

=

∫
M

(B − B
V

)(V∆ f − f∆V) dvg

=

∫
M

(−⟨∇(VB),∇ f ⟩ + ⟨∇( f B),∇V⟩) dvg

= −

∫
M

⟨∇B,V∇ f − f∇V⟩ dvg.

(2.4)

Using (2.2) and (2.4), we have∫
M

V(B − B
V

)2 dvg

= −
n

nc − 1

∫
M

T̊i j, j(V fi − f Vi) dvg

=
n

nc − 1

∫
M

T̊i j(V fi − f Vi) j dvg

=
n

nc − 1

∫
M

T̊i j(V j fi − f jVi + V fi j − f Vi j) dvg

=
n

nc − 1

∫
M

VT̊i j

(
fi j −

f
V

Vi j

)
dvg

=
n

nc − 1

∫
M

VT̊i jCi j dvg

=
n

nc − 1

∫
M

VT̊i jC̊i j dvg

≤
n

|nc − 1|


∫
M

V |T̊i j|
2 dvg


1
2

∫
M

V |C̊i j|
2 dvg


1
2

.

(2.5)

Note that

|C̊i j|
2 = |Ci j|

2 −
1
n

(
∆ f −

∆V
V

f
)2
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which gives ∫
M

V |C̊i j|
2 dvg =

∫
M

V |Ci j|
2 dvg −

1
n

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg. (2.6)

Since (∆V)g − ∇2V + VRic ≥ −(n − 1)K on (Mn, g), by (2.1) we have∫
M

V |Ci j|
2 dvg =

∫
M

V
∣∣∣∣∣∇2 f −

f
V
∇2V

∣∣∣∣∣2 dvg

= −

∫
M

(
(∆V)g − ∇2V + VRic

) (
∇ f −

∇V
V

f ,∇ f −
∇V
V

f
)

dvg

+

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg

≤

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg + (n − 1)K
∫
M

V2
∣∣∣∣∣∇ f

V

∣∣∣∣∣2 dvg,

(2.7)

where we note that ∇ f − ∇V
V f = V∇ f

V . Therefore,∫
M

V |C̊i j|
2 dvg ≤

n − 1
n

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg + (n − 1)K
∫
M

V2
∣∣∣∣∣∇ f

V

∣∣∣∣∣2 dvg. (2.8)

Using the Rayleigh-Reitz principle, we note that the first nonzero eigenvalue λ1 of ∆ f − ∆V
V f = −λ f

V
on (Mn, g) can be characterized by

λ1 = inf
f∈C∞(M)

∫
M

V2
∣∣∣∇ f

V

∣∣∣2 dvg∫
M

V
(

f
V

)2
dvg

.

Then, ∫
M

V2
∣∣∣∣∣∇ f

V

∣∣∣∣∣2 dvg = −

∫
M

V
(

f
V

) (
∆ f −

∆V
V

f
)

dvg

≤


∫
M

V
(

f
V

)2

dvg


1
2

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg


1
2

≤

 1
λ1

∫
M

V2
∣∣∣∣∣∇ f

V

∣∣∣∣∣2 dvg


1
2

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg


1
2

,

(2.9)

where in the first equality we have used

div
(
V2∇

(
f
V

))
= V∆ f − f∆V.
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Consequently ∫
M

V2
∣∣∣∣∣∇ f

V

∣∣∣∣∣2 dvg ≤
1
λ1

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg

=
1
λ1

∫
M

V
(
B − B

V
)2

dvg.

(2.10)

Inserting (2.10) into (2.8), we have∫
M

V |C̊i j|
2 dvg ≤

n − 1
n

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg +
(n − 1)K
λ1

∫
M

V
(
∆ f −

∆V
V

f
)2

dvg

=
n − 1

n

(
1 +

nK
λ1

) ∫
M

V
(
∆ f −

∆V
V

f
)2

dvg

=
n − 1

n

(
1 +

nK
λ1

) ∫
M

V
(
B − B

V
)2

dvg.

(2.11)

Therefore, combining (2.11) with (2.5) concludes the proof of (1.4). From the identity∣∣∣∣∣∣∣T − B
V

n
g

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣T − B
n

g
∣∣∣∣∣2 + 1

n

(
B − B

V
)2
,

we obtain the inequality (1.5).
Next, we consider the case of equality of (1.4) or (1.5). The idea in the proof of the case of equality

of (1.4) or (1.5) is similar to the one used by Cheng in [2]. We will assume that (∆V)g−∇2V+VRic > 0
on (Mn, g)

Fisrt, let us suppose that c = 1
n . Obviously, if T = B

n g on (Mn, g), the equalities in (1.4) and (1.5)
hold. On the other hand, suppose the equality in (1.4) (or, equivalently, (1.5)) holds. It is obvious that
T = B

n g. Hence conclusions (i) and (ii) are equivalent.
Now, let us suppose that c , 1

n . We may take K = 0. By the proof of Theorem 1.2, the equality in
(1.4) holds if and only if

Ti j −
B
n

gi j = C̊i j (2.12)

and (
(∆V)g − ∇2V + VRic

) (
∇

f
V
,∇

f
V

)
= 0 (2.13)

on (Mn, g). Note that (2.13) and (∆V)g−∇2V +VRic > 0 on (Mn, g). We have that ∇ f
V ≡ 0 on (Mn, g).

Then f
V is constant. It follows then from (2.12) that Ti j =

B
n gi j on (Mn, g).

On the other hand, if Ti j =
B
n gi j on (Mn, g), then B is constant on (Mn, g) (see [2, Proposition 2.1]).

Thus B = B
V

on (Mn, g). The equalities in (1.4) and (1.5) hold. Hence conclusions (i) and (ii) are
equivalent. Obviously (iii) implies (ii). If (ii) holds, by the above argument, (ii) implies B = B

V
on

(Mn, g). Thus (iii) also holds. Hence conclusions (ii) and (iii) are equivalent. Therefore, we complete
the proof of Theorem 1.2.
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3. High-order mean curvatures of sub-static hypersurfaces in space forms

Assume (N, g̃) is an (n + 1)-dimensional Riemannian manifold, n ≥ 3. Suppose (Σ, g) is a smooth
connected oriented closed hypersurface immersed in (N, g̃) with induced metric g. Let ν denote the
outward unit normal to Σ, and A the second fundamental form, denoted by A(X,Y) = −⟨∇̃XY, ν⟩, where
X,Y ∈ TpΣ, p ∈ Σ, and ∇̃ denotes the Levi-Civita connection of (N, g̃). A determines an equivalent
(1, 1)-tensor, called the shape operator given by AX = ∇̃Xν. Σ is called totally umbilical if A is a
multiple of its metric g at every point of Σ.

The r-th symmetric functions sr on hypersurface (Σ, g) of (N, g̃) is related to the Newton transfor-
mation Pr by

trPr = (n − r)sr,

where

Pr =

r∑
j=0

(−1) jsr− jA j, r = 1, · · · , n.

The r-th mean curvature Hr of Σ at p is defined by sr =
n!

r!(n−r)! Hr, 0 ≤ r ≤ n. When the ambient space
is a space form Nn+1

a , we have divPr = 0, for 0 ≤ r ≤ n. For detail, see [2,21] and the references therein.

Proof of Theorem 1.3. Since trPr = (n−r)sr and divPr = 0, taking T = Pr and B = (n−r)sr in Theorem
1.2, we have

(n − r)2
∫
Σ

V(sr − sV
r )2 dvg ≤ n(n − 1)

∫
Σ

V
∣∣∣∣∣Pr −

(n − r)sr

n
g
∣∣∣∣∣2 dvg,

equivalently, ∫
Σ

V

∣∣∣∣∣∣Pr −
(n − r)sV

r

n
g

∣∣∣∣∣∣
2

dvg ≤ n
∫
Σ

V
∣∣∣∣∣Pr −

(n − r)sr

n
g
∣∣∣∣∣2 dvg,

which are (1.6) and (1.7), respectively.
Now we prove the case of equalities in (1.6) and (1.7). If the strict sub-static inequality holds on

(Σ, g), by Theorem 1.2, statements (i), (ii), and (iii) are equivalent and sr = sV
r is constant on (Σ, g).

Therefore, we complete the proof of Theorem 1.3.

4. k-scalar curvature of locally conformal flat sub-static manifolds

We first recall the definition of the k-scalar curvatures of a Riemannian manifold. If (Mn, g) is an
n-dimensional Riemannian manifold, n ≥ 3, the Schouten tensor of M is

S =
1

n − 2

(
Ric −

1
2(n − 1)

Rg
)
.

By definition, S : T M → T M is a symmetric (1, 1)-tensor field. The k-scalar curvatures σk(S) on a
Riemannian manifold (Mn, g) is related to the k-th Newton tensor Tk is defined by

(Tk)
j
i =

1
k!

∑
δ

j1... jk j
i1...iki S

j1
i1
. . .S

jk
ik
.
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Moreover, trTk = (n − k)σk(S). When (Mn, g) is locally conformally flat, then, for 1 ≤ k ≤ n,
divTk = 0. For detail, see [2, 22] and the references therein.

Proof of Theorem 1.4. Taking T = Tk and B = (n − k)σk(S) in Theorem 1.2, then we complete the
proof of Theorem 1.4.

Finally, it is worth noticing that Theorem 1.2 has been stated in a quite general form, that can be
adapted to analyse different versions of almost-Schur type inequalities for different interesting geomet-
ric tensors related, such as Lovelock curvatures and Q-curvatures, which have been in the center of
plenty of resent research in geometric analysis.
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