Let $ R, S $ be arbitrary associative rings and $ _RC_S $ a semidualizing bimodule. We give some equivalent characterizations for $ R $ being left coherent (and right perfect) rings, left Noetherian rings and left Artinian rings in terms of the $ C $-($ {\mathop{{{\text{FP}}}}\nolimits} $-)injectivity, flatness and projectivity of character modules of certain left $ S $-modules.
Citation: Zhaoyong Huang. On the $ C $-flatness and injectivity of character modules[J]. Electronic Research Archive, 2022, 30(8): 2899-2910. doi: 10.3934/era.2022147
Let $ R, S $ be arbitrary associative rings and $ _RC_S $ a semidualizing bimodule. We give some equivalent characterizations for $ R $ being left coherent (and right perfect) rings, left Noetherian rings and left Artinian rings in terms of the $ C $-($ {\mathop{{{\text{FP}}}}\nolimits} $-)injectivity, flatness and projectivity of character modules of certain left $ S $-modules.
[1] | T. J. Cheatham, D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc., 81 (1981), 175–177. https://doi.org/10.1090/S0002-9939-1981-0593450-2 doi: 10.1090/S0002-9939-1981-0593450-2 |
[2] | E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, Vol. 1, the second revised and extended edition, de Gruyter Expositions in Math, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. https://doi.org/10.1515/9783110215212 |
[3] | D. J. Fieldhouse, Character modules, Comment. Math. Helv., 46 (1971), 274–276. https://doi.org/10.1007/BF02566844 |
[4] | R. Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, Second revised and extended edition, Walter de Gruyter GmbH & Co. KG, Berlin, 2012. https://doi.org/10.1515/9783110218114 |
[5] | Z. Y. Huang, Duality pairs induced by Auslander and Bass classes, Georgian Math. J., 28 (2021), 867–882. https://doi.org/10.1515/gmj-2021-2101 doi: 10.1515/gmj-2021-2101 |
[6] | H. B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267–284. https://doi.org/10.7146/math.scand.a-11434 doi: 10.7146/math.scand.a-11434 |
[7] | E. S. Golod, $G$-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62–66. |
[8] | H. Holm, D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47 (2007), 781–808. https://doi.org/10.1215/kjm/1250692289 doi: 10.1215/kjm/1250692289 |
[9] | H. Holm, P. Jøgensen, Semidualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205 (2006), 423–445. https://doi.org/10.1016/j.jpaa.2005.07.010 doi: 10.1016/j.jpaa.2005.07.010 |
[10] | Z. F. Liu, Z. Y. Huang, A. M. Xu, Gorenstein projective dimension relative to a semidualizing bimodule, Comm. Algebra, 41 (2013), 1–18. https://doi.org/10.1080/00927872.2011.602782 doi: 10.1080/00927872.2011.602782 |
[11] | R. Takahashi, D. White, Homological aspects of semidualizing modules, Math. Scand., 106 (2010), 5–22. https://doi.org/10.7146/math.scand.a-15121 doi: 10.7146/math.scand.a-15121 |
[12] | X. Tang, FP-injectivity relative to a semidualizing bimodule, Publ. Math. Debrecen, 80 (2012), 311–326. https://doi.org/10.5486/PMD.2012.4907 doi: 10.5486/PMD.2012.4907 |
[13] | X. Tang, Z. Y. Huang, Homological aspects of the dual Auslander transpose II, Kyoto J. Math., 57 (2017), 17–53. https://doi.org/10.1215/21562261-3759504 doi: 10.1215/21562261-3759504 |
[14] | X. Tang, Z. Y. Huang, Homological invariants related to semidualizing bimodules, Colloq. Math., 156 (2019), 135–151. https://doi.org/10.4064/cm7476-3-2018 doi: 10.4064/cm7476-3-2018 |
[15] | T. Wakamatsu, On modules with trivial self-extensions, J. Algebra, 114 (1988), 106–114. https://doi.org/10.1016/0021-8693(88)90215-3 doi: 10.1016/0021-8693(88)90215-3 |
[16] | T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra, 134 (1990), 298–325. https://doi.org/10.1016/0021-8693(90)90055-S doi: 10.1016/0021-8693(90)90055-S |
[17] | T. Wakamatsu, Tilting modules and Auslander's Gorenstein property, J. Algebra, 275 (2004), 3–39. https://doi.org/10.1016/j.jalgebra.2003.12.008 doi: 10.1016/j.jalgebra.2003.12.008 |
[18] | B. H. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc., 18 (1967), 155–158. https://doi.org/10.1090/S0002-9939-1967-0224649-5 |
[19] | B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc., 2 (1970), 323–329. https://doi.org/10.1112/jlms/s2-2.2.323 doi: 10.1112/jlms/s2-2.2.323 |
[20] | T. Araya, R. Takahashi, Y. Yoshino, Homological invariants associated to semi-dualizing bimodules, J. Math. Kyoto Univ., 45 (2005), 287–306. https://doi.org/10.1215/kjm/1250281991 doi: 10.1215/kjm/1250281991 |
[21] | A. Beligiannis, I. Reiten, Homological and homotopical aspects of Torsion theories, Amer. Math. Soc., 188 (2007). https://doi.org/http://dx.doi.org/10.1090/memo/0883 |
[22] | F. Mantese, I. Reiten, Wakamatsu tilting modules, J. Algebra, 278 (2004), 532–552. https://doi.org/10.1016/j.jalgebra.2004.03.023 |
[23] | F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Secondnd edition, Springer-Verlag, New York-Berlin-Heidelberg, 1992. https://doi.org/10.1007/978-1-4612-4418-9 |
[24] | G. Azumaya, Countable generatedness version of rings of pure global dimension zero, in Representations of Algebras and Related Topics, London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge, (1992), 43–79. https://doi.org/10.1017/CBO9780511661853.003 |
[25] | H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc., 102 (1962), 18–29. https://doi.org/10.2307/1993878 doi: 10.2307/1993878 |
[26] | S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457–473. https://doi.org/10.2307/1993382 |
[27] | Z. Y. Huang, Homological dimensions relative to preresolving subcategories II, Forum Math., 34 (2022), 507–530. https://doi.org/10.1515/forum-2021-0136 doi: 10.1515/forum-2021-0136 |
[28] | J. J. Rotman, An Introduction to Homological Algebra, Second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977 |