Research article Special Issues

The existence results for a class of generalized quasilinear Schrödinger equation with nonlocal term

  • Received: 06 November 2021 Revised: 15 March 2022 Accepted: 21 March 2022 Published: 12 April 2022
  • In this paper, we discuss the generalized quasilinear Schrödinger equation with nonlocal term:

    $ \begin{align} -\mathrm{div}(g^{2}(u)\nabla u)+g(u)g'(u)|\nabla u|^{2}+V(x)u = \left(|x|^{-\mu}\ast F(u)\right)f( u),\; \; x\in \mathbb{R}^{N}, \;\;\;\;\;\;\;\;({{\rm{P}}})\end{align} $

    where $ N\geq 3 $, $ \mu\in(0, N) $, $ g\in \mathbb{C}^{1}(\mathbb{R}, \mathbb{R}^{+}) $, $ V\in \mathbb{C}^{1}(\mathbb{R}^N, \mathbb{R}) $ and $ f\in \mathbb{C}(\mathbb{R}, \mathbb{R}) $. Under some "Berestycki-Lions type conditions" on the nonlinearity $ f $ which are almost necessary, we prove that problem $ (\rm P) $ has a nontrivial solution $ \bar{u}\in H^{1}(\mathbb{R}^{N}) $ such that $ \bar{v} = G(\bar{u}) $ is a ground state solution of the following problem

    $ \begin{align} - \Delta v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \left(|x|^{-\mu}\ast F(G^{-1}(v))\right)f( G^{-1}(v)),\; \; x\in \mathbb{R}^{N}, \;\;\;\;\;\;\;\;({{\rm{\bar P}}})\end{align} $

    where $ G(t): = \int_{0}^{t} g(s) ds $. We also give a minimax characterization for the ground state solution $ \bar{v} $.

    Citation: Die Hu, Peng Jin, Xianhua Tang. The existence results for a class of generalized quasilinear Schrödinger equation with nonlocal term[J]. Electronic Research Archive, 2022, 30(5): 1973-1998. doi: 10.3934/era.2022100

    Related Papers:

  • In this paper, we discuss the generalized quasilinear Schrödinger equation with nonlocal term:

    $ \begin{align} -\mathrm{div}(g^{2}(u)\nabla u)+g(u)g'(u)|\nabla u|^{2}+V(x)u = \left(|x|^{-\mu}\ast F(u)\right)f( u),\; \; x\in \mathbb{R}^{N}, \;\;\;\;\;\;\;\;({{\rm{P}}})\end{align} $

    where $ N\geq 3 $, $ \mu\in(0, N) $, $ g\in \mathbb{C}^{1}(\mathbb{R}, \mathbb{R}^{+}) $, $ V\in \mathbb{C}^{1}(\mathbb{R}^N, \mathbb{R}) $ and $ f\in \mathbb{C}(\mathbb{R}, \mathbb{R}) $. Under some "Berestycki-Lions type conditions" on the nonlinearity $ f $ which are almost necessary, we prove that problem $ (\rm P) $ has a nontrivial solution $ \bar{u}\in H^{1}(\mathbb{R}^{N}) $ such that $ \bar{v} = G(\bar{u}) $ is a ground state solution of the following problem

    $ \begin{align} - \Delta v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \left(|x|^{-\mu}\ast F(G^{-1}(v))\right)f( G^{-1}(v)),\; \; x\in \mathbb{R}^{N}, \;\;\;\;\;\;\;\;({{\rm{\bar P}}})\end{align} $

    where $ G(t): = \int_{0}^{t} g(s) ds $. We also give a minimax characterization for the ground state solution $ \bar{v} $.



    加载中


    [1] S. Kurihara, Large-amplitude quasi-solutions in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262
    [2] J. Liu, Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc. Amer. Math. Soc., 131 (2003), 441–448. https://doi.org/10.1090/S0002-9939-02-06783-7 doi: 10.1090/S0002-9939-02-06783-7
    [3] S. Cuccagna, On instability of excited states of the nonlinear quasilinear Schrödinger equation, Phys. D, 238(2009), 38–54. https://doi.org/10.1016/j.physd.2008.08.010 doi: 10.1016/j.physd.2008.08.010
    [4] J. Liu, Y. Wang, Z. Wang, Soliton solutions for quasilinear Schrödinger equations. Ⅱ, J. Differ. Equ., 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5
    [5] Y. Deng, S. Peng, S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 260 (2015), 115–147. https://doi.org/10.1016/j.jde.2014.09.006 doi: 10.1016/j.jde.2014.09.006
    [6] Z. Li, Y. Zhang, Ground states for a class of quasilinear Schrödinger equations with vanishing potentials, Commun. Pure Appl. Anal., 20 (2021), 933–954. https://doi.org/10.3934/cpaa.2020298 doi: 10.3934/cpaa.2020298
    [7] D. Hu, Q. Zhang, Existence ground state solutions for a quasilinear Schrödinger equation with Hardy potential and Berestycki-Lions type conditions, Appl. Math. Lett., 123 (2022), 107615. https://doi.org/10.1016/j.aml.2021.107615 doi: 10.1016/j.aml.2021.107615
    [8] D. Hu, X. Tang, Q. Zhang, Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type, Commun. Pure Appl. Anal., 21 (2022), 1071. https://doi.org/10.3934/cpaa.2022010 doi: 10.3934/cpaa.2022010
    [9] Q. Zhang, D. Hu, Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type, Complex Var. Elliptic Equ., (2021), 1–15. https://doi.org/10.1080/17476933.2021.1916918 doi: 10.1080/17476933.2021.1916918
    [10] S. Pekar, Untersuchung über Die Elektronentheorie Der Kristalle, Akademie Verlag, Berlin, 1954.
    [11] E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1976), 93–105. https://doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293
    [12] P. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072. https://doi.org/10.1016/0362-546X(80)90016-4 doi: 10.1016/0362-546X(80)90016-4
    [13] F. Gao, M. Yang, J. Zhou, Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential, Nonlinear Anal., 195 (2020), 111817. https://doi.org/10.1016/j.na.2020.111817 doi: 10.1016/j.na.2020.111817
    [14] M. Yang, Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^{2}$ with critical exponential growth, ESAIM: COCV, 24 (2018), 177–209. https://doi.org/10.1051/cocv/2017007 doi: 10.1051/cocv/2017007
    [15] X. Yang, X. Tang, G. Gu, Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation, Complex Var. Elliptic Equ., 65 (2020), 1515–1547. https://doi.org/10.1080/17476933.2019.1664487 doi: 10.1080/17476933.2019.1664487
    [16] Q. Li, K. Teng, J. Zhang, J. Nie, An existence result for a generalized quasilinear Schrödinger equation with nonlocal term, J. Funct. Spaces, (2020). https://doi.org/10.1155/2020/6430104 doi: 10.1155/2020/6430104
    [17] X. Yang, X. Tang, G. Gu, Concentration behavior of ground states for a generalized quasilinear Choquard equation, Math. Meth. Appl. Sci., 43 (2020), 3569–3585. https://doi.org/10.1002/mma.6138 doi: 10.1002/mma.6138
    [18] C. Alves, M. Yang, Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys., 55 (2014), 061502. https://doi.org/10.1063/1.4884301 doi: 10.1063/1.4884301
    [19] Y. Benia, A. Scapellato, Existence of solution to Korteweg-de Vries equation in a non-parabolic domain, Nonlinear Anal., 195 (2020), 111758. https://doi.org/10.1016/j.na.2020.111758 doi: 10.1016/j.na.2020.111758
    [20] X. Luo, A. Mao, X. Wang, Multiplicity of quasilinear Schrödinger equation, J. Funct. Spaces, 2020 (2020), 1894861. https://doi.org/10.1155/2020/1894861 doi: 10.1155/2020/1894861
    [21] M. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Anal., 47 (2001), 503–511. https://doi.org/10.1016/S0362-546X(01)00195-X doi: 10.1016/S0362-546X(01)00195-X
    [22] X. Yang, W. Zhang, F. Zhao, Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method, J. Math. Phys., 59 (2018), 081503. https://doi.org/10.1063/1.5038762 doi: 10.1063/1.5038762
    [23] H. Berestycki, P. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [24] Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA, 80 (2013), 194–201. https://doi.org/10.1016/j.na.2012.10.005 doi: 10.1016/j.na.2012.10.005
    [25] M. Willem, Minimax Theorems, Birkhäuser Boston Inc, Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1 doi: 10.1007/978-1-4612-4146-1
    [26] S. Chen, X. Tang, Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal., 9 (2020), 496–515. https://doi.org/10.1515/anona-2020-0011 doi: 10.1515/anona-2020-0011
    [27] L. Jeanjean, J. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad., Sci. Paris Sér. I Math., 327 (1998), 23–28. https://doi.org/10.1016/S0764-4442(98)80097-9 doi: 10.1016/S0764-4442(98)80097-9
    [28] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147
    [29] H. Luo, Ground state solutions of Pohožaev type and Nehari type for a class of nonlinear Choquard equations, J. Math. Anal. Appl., 467 (2018), 842–862. https://doi.org/10.1016/j.jmaa.2018.07.055 doi: 10.1016/j.jmaa.2018.07.055
    [30] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. https://doi.org/10.1090/S0002-9939-1983-0699419-3 doi: 10.1090/S0002-9939-1983-0699419-3
    [31] P. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann. Inst. H. Poincaré. Anal. Non. Linéaire, 1 (1984), 109–145. https://doi.org/10.1016/s0294-1449(16)30428-0 doi: 10.1016/s0294-1449(16)30428-0
    [32] Y. Deng, W. Huang, S. Zhang, Ground state solutions for generalized quasilinear Schrödinger equations with critical growth and lower power subcritical perturbation, Adv. Nonlinear Stud., 19 (2019), 219–237. https://doi.org/10.1515/ans-2018-2029 doi: 10.1515/ans-2018-2029
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(997) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog