Research article Special Issues

Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator

  • Received: 12 December 2021 Revised: 15 March 2022 Accepted: 01 April 2022 Published: 12 April 2022
  • In this paper, we consider a predator-prey model with density-dependent prey-taxis and stage structure for the predator. We establish the existence of classical solutions with uniform-in-time bound in a one-dimensional case. In addition, we prove that the solution stabilizes to the prey-only steady state under some conditions.

    Citation: Ailing Xiang, Liangchen Wang. Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator[J]. Electronic Research Archive, 2022, 30(5): 1954-1972. doi: 10.3934/era.2022099

    Related Papers:

  • In this paper, we consider a predator-prey model with density-dependent prey-taxis and stage structure for the predator. We establish the existence of classical solutions with uniform-in-time bound in a one-dimensional case. In addition, we prove that the solution stabilizes to the prey-only steady state under some conditions.



    加载中


    [1] Y. Du, P. Y. H. Pang, M. Wang, Qualitative analysis of a prey-predator model with stage structure for the predator, SIAM J. Appl. Math., 69 (2008), 596–620.
    [2] J. Wang, M. Wang, A predator-prey model with taxis mechanisms and stage structure for the predator, Nonlinearity, 33 (2020), 3134–3172. https://doi.org/10.1137/070684173 doi: 10.1137/070684173
    [3] S. Liu, E. Beretta, A stage-structured predator-prey model of Beddington-DeAngelis type, SIAM J. Appl. Math., 66 (2006), 1101–1129. https://doi.org/10.1088/1361-6544/ab8692 doi: 10.1088/1361-6544/ab8692
    [4] R. Ortega, Variations of Lyapunov's stability criterion and periodic prey-predator systems, Electron. Res. Arch., 29 (2021), 3995–4008. https://doi.org/10.1137/050630003 doi: 10.1137/050630003
    [5] K. M. Owolabi, A. Atangana, Spatiotemporal dynamics of fractional predator-prey system with stage structure for the predator, Int. J. Appl. Comput. Math., 3 (2017), 903–924. https://doi.org/10.3934/era.2021069 doi: 10.3934/era.2021069
    [6] W. Wang, L. Chen, A predator-prey system with stage-structure for predator, Comput. Math. Appl., 38 (1997), 83–91. https://doi.org/10.1007/s40819-017-0389-2 doi: 10.1007/s40819-017-0389-2
    [7] R. Xu, M. A. J. Chaplain, F. A. Davidson, Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay, Appl. Math. Comput., 159 (2004), 863–880. https://doi.org/10.1016/S0898-1221(97)00056-4 doi: 10.1016/S0898-1221(97)00056-4
    [8] F. Li, H. Li, Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey, Math. Comput. Model., 55 (2012), 672–679. https://doi.org/10.1016/j.amc.2003.11.008 doi: 10.1016/j.amc.2003.11.008
    [9] X. Meng, H. Huo, H. Xiang, Q. Yin, Stability in a predator-prey model with Crowley-Martin function and stage structure for prey, Comput. Appl. Math., 232 (2014), 810–819. https://doi.org/10.1016/j.mcm.2011.08.041 doi: 10.1016/j.mcm.2011.08.041
    [10] G. Ren, Y. Shi, Global boundedness and stability of solutions for prey-taxis model with handling and searching predators, Nonlinear Anal. RWA, 60 (2021), 103306. https://doi.org/10.1016/j.amc.2014.01.139 doi: 10.1016/j.amc.2014.01.139
    [11] X. Fu, L. H. Tang, C. Liu, J. D. Huang, T. Hwa, P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. https://doi.org/10.1016/j.nonrwa.2021.103306 doi: 10.1016/j.nonrwa.2021.103306
    [12] C. Liu, et al., Sequential establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238–241. https://doi.org/10.1103/PhysRevLett.108.198102 doi: 10.1103/PhysRevLett.108.198102
    [13] R. Smith, D. Iron, T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, European J. Appl. Math., 30 (2019), 196–218. https://doi.org/10.1126/science.1209042 doi: 10.1126/science.1209042
    [14] H. Jin, Y. Kim, Z. Wang, Boundedness, stabilization and pattern formation driven by density suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632–1657.
    [15] C. Yoon, Y. J. Kim, Global existence and aggregation in a Keller-Segel model with FokkerPlanck diffusion, Acta Appl. Math., 149 (2017), 101–123. https://doi.org/10.1137/17M1144647 doi: 10.1137/17M1144647
    [16] Y. Tao, M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Meth. Appl. Sci., 27 (2017), 1645–1683.
    [17] J. Jiang, K. Fujie, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equ., 569 (2020), 5338–5378. https://doi.org/10.1142/S0218202517500282 doi: 10.1142/S0218202517500282
    [18] J. Jiang, P. Laurencot, Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility, J. Differ. Equ., 299 (2021), 513–541.
    [19] H. Jin, S. Shi, Z. Wang, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility, J. Differ. Equ., 269 (2020), 6758–6793. https://doi.org/10.1016/j.jde.2021.07.029 doi: 10.1016/j.jde.2021.07.029
    [20] W. Lyu, Z. Wang, Global classical solutions for a class of reaction-diffusion system with density-suppressed motility, Electron. Res. Arch., 30 (2022), 995–1015. https://doi.org/10.1016/j.jde.2020.05.018 doi: 10.1016/j.jde.2020.05.018
    [21] J. Li, Z. Wang, Traveling wave solutions to the density-suppressed motility model, J. Differ. Equ., 301 (2021), 1–36. https://doi.org/10.3934/era.2022052 doi: 10.3934/era.2022052
    [22] L. Wang, Improvement of conditions for boundedness in a chemotaxis consumption system with density-dependent motility, Appl. Math. Lett., 125 (2022), 107724. https://doi.org/10.1016/j.jde.2021.07.038 doi: 10.1016/j.jde.2021.07.038
    [23] J. Wang, M. Wang, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60 (2019), 011507. https://doi.org/10.1016/j.aml.2021.107724 doi: 10.1016/j.aml.2021.107724
    [24] Z. Wang, X. Xu, Steady states and pattern formation of the density-suppressed motility model, IMA J. Appl. Math., 86 (2021), 577–603. https://doi.org/10.1063/1.5061738 doi: 10.1063/1.5061738
    [25] H. Jin, Z. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European J. Appl. Math., 32(2021), 652–682. https://doi.org/10.1093/imamat/hxab006 doi: 10.1093/imamat/hxab006
    [26] Z. Wang, J. Xu, On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol., 82 (2021), 1–37. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
    [27] P. Kareiva, G. Odell. Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233–270. https://doi.org/10.1007/s00285-021-01562-w doi: 10.1007/s00285-021-01562-w
    [28] H. Amann, Dynamic theory of quasilinear parabolic equations, II: reaction-diffusion systems, Diff. Int. Equ., 3 (1990), 13–75.
    [29] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Function Spaces, Differential Operators and Nonlinear Analysis, Friedrichroda, 1992, in: Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126.
    [30] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516–1537.
    [31] Z. Wang, T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 037108. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426
    [32] H. Jin, Z. Wang. Global stability of prey-taxis systems, J. Differ. Equ., 262 (2017), 1257–1290. https://doi.org/10.1063/1.2766864 doi: 10.1063/1.2766864
    [33] Y. Tao, M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555–2573.
    [34] L. Xu, L. Mu, Q. Xin, Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source, Discrete Contin, Dyn. Syst. Ser. A., 47 (2021), 3031-3043. https://doi.org/10.1007/s00033-015-0541-y doi: 10.1007/s00033-015-0541-y
    [35] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889–2905. https://doi.org/10.3934/dcds.2020396 doi: 10.3934/dcds.2020396
    [36] Y. Lou, M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differ. Equ., 40 (2015), 1905–1941. https://doi.org/10.1080/03605302.2015.1052882 doi: 10.1080/03605302.2015.1052882
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1174) PDF downloads(101) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog