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Abstract: In this paper, we consider a predator-prey model with density-dependent prey-taxis and
stage structure for the predator. We establish the existence of classical solutions with uniform-in-time
bound in a one-dimensional case. In addition, we prove that the solution stabilizes to the prey-only
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1. Introduction

This paper deals with the predator-prey model with density-dependent motilities and stage struc-
ture for the predator

u, = (dy(W)u) + bv — cu, x€Q, t>0,
Ve = (do(U)v)x + kuw — v, x € Q, t>0,
Wy = dsWyy + aw — w2 — uw — row, x e Q, t>0, (1.1)
===, x€dQ, >0,

u(x,0) = ug(x), v(x,0) =vo(x), w(x,0)=wy(x), x€Q,

under homogeneous Neumann boundary conditions in a smooth bounded domain Q C R and §/dv
represents the outer unit normal vector of 0€), where u = u(x,t),v = v(x,t) and w = w(x,t) are the
densities of the mature predator, immature predator and prey at position x and time ¢, respectively.
ds,a,b,c, k,r are positive constants and more details of the parameters can be found in [1,2]. The
terms (d;(w)u),, and (d>(u)v),, state that the motility functions d;(w) and d,(«) have some influence on
the diffusion of mature predator and immature predator.
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Biological predator-prey model plays a critical role in survival and reproduction of organisms, espe-
cially the predator-prey system with stage structure of predator describes the biological predator-prey
phenomenon and its irregular movement more vividly(see [3—7] and reference therein). Recently, the
following stage structure of predator with taxis mechanisms model has been studied by Wang and
Wang [2]:

u; = diAu— xV - (uVw) + bv — cu, x€Q, t>0,
v, = daAv — pV - WVu) + kuw — v, x e Q, t>0,
w, = d3Aw + aw — w? — uw — row, xeQ, t>0, (1.2)
== Qno, x€dQ, >0,

e 0) = 1), v 0) = vo(x). wix.0) = wo(x),  x € Q.

In the case n = 1 with p > 0 and n = 2 with p = 0, the authors [2] first established that the solutions of
problem (1.2) are global existence and boundedness. Secondly, the linearized stability of normal steady
state and predator-free steady state are obtained by using local bifurcation and Hopf bifurcation theory.
Moreover, they proved the global stability of predator-free steady state. On the other hand, many
scholars have also studied the stage state for prey [8,9] and the different state of the predator [10].

In order to describe the movement of species more meaningfully, we illustrate a chemotaxis system
with density-dependent motility to describe the motility law of predators. At present, this kind of
model is mostly used in the field of chemical signal substances. The classic model is proposed in [11]

{ = AyWu) + pu(l —u),  x€Q, 1>0, (1.3)

v, =Av—v+u, xeQ, >0,

where u(x, t) is the densities of bacteria and v(x, #) is the concentration of AHL at position x and time .
This system describes bacteria with logistic sources whose diffusion rate depends on the motion func-
tion y(v), which considers the repressive effect of AHL concentration on bacteria motility by supposing
v'(v) < 0. This diffusion mechanism is called “density suppression motility” in [12, 13]. Therefore,
it is a very interesting phenomenon and has been widely studied. If 4 > 0, Jin et.al [14] proved that
the problem in two dimensions possesses a global classical solution and coexistence steady state is
globally asymptotically stable. Yoon and Kim [15] obtained a global classical solution with 4 = 0 and
a particular form of y(v) = 5—2, co > 0,k > 0 in any dimensions provided ¢, is small. Moreover, Tao and
Winkler [16] proved that some weak solutions exist globally under high dimensional conditions and
in a specific three-dimensional case, this solution is bounded and classical with u = 0. We refer the
readers to [17-24] for other interesting results on density-suppressed model.

Recently, this kind of model is also studied in the predator-prey mode [25,26]. In [26], the following
density-dependent model with homogeneous Neumann boundary conditions is proposed

u; = Adi(wu) + u(ayw — biu — c1v), xe, >0,
v; = Ado(W)v) + v(aaw — bru — ¢v), xeQ, >0, (1.4)
w; = Aw —w(u + v) + uw(m(x) — w), xeQ, >0,

when by = ¢;,¢; = ¢,b, = b and m(x) = 1, the model (1.4) exists the global bounded classical
solution, and asymptotic behavior is derived in different parameter regimes. d;(w)(i = 1,2) indicates
the resource dependent diffusion rate of species with monotonic properties: d’(w) < 0(i = 1,2), which
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is consistent with the fact that predators reduce their random diffusion when encountering the prey
observed by kareiva and odell [27]. The major difference between (1.1) and (1.4) is that the motility
of immature predators are influenced by mature predators rather than prey and mature predators grow
from immature predators. Hence, due to its biological significance, the density-dependent model has
attracted the interest of many scholars.

The goal of this paper is to establish global existence and large time behavior of classical solutions
to the model (1.1). We shall suppose that there exist 7, > n; > 0 such that d;(w) and d,(u) satisfy

(H)) d;(w) € C? ([0, )),d;(w) > 0 and di(w) < 0forallw >0,
(H») d>(u) € C3 ([0, )),m < d>(u) <1, forall u > 0.

In this paper, the main results are stated as below. Our first result derives global boundedness of
classical solution to (1.1).

Theorem 1.1. Let Q C R be a bounded domain with smooth boundary and the assumptions (H,)—(H,)

3
hold. Suppose that the parameters a,b,c,k,r > 0 and (uy, vy, wyg) € [W“”(Q)] with ug, vy, wy > 0.
Then the model (1.1) has a unique nonnegative classical solution (u,v,w) satisfying

(-, Dll o) + [IVC, Do) + IIWE Dllwro@y < C - forallt > 0, (1.5)
where C > 0 is a constant. Particularly, we have 0 < w < M, where
M := max {a, [[wol[~} .

The second result is that we consider the global stability of the classical solution obtained in Theo-
rem 1.1.

3 _
Theorem 1.2. Let (ug, vo, Wp) € [W“’"(Q)] with ugy, vo = 0(£ 0) and wo > 0in Q. The solution (u, v, w)
of (1.1) obtained in Theorem 1.1 has the following properties: If the positive parameters a, b, c, k and

r satis "k_ﬂ > 1, then
car

(-, Dl ) + IVC, D) + [Iw(, 1) = allp=@) — 0 as t — oo. (1.6)

In the paper, for simplicity, we abbreviate fot fQ f(, s)dxds, fg fCo9)ds, || - |l and || - |lwirq) as
fot fQ f, fQ £l -1, and || - I, respectively. Moreover, C stands for a generic positive constant which
may alter from line to line and is independent of time.

The organizational structure of this paper is as below. In Section 2, we show the local existence of
a solution to (1.1) and some preliminary results are given. In Section 3, we establish global existence
and boundedness for the model (1.1) and proof of Theorem 1.1. Section 4, we obtain the prey-only
global stability to achieve Theorem 1.2.

2. Preliminaries

We first give the existence of local solutions of (1.1) by using Amann’s theorem [28, 29](cf.
also [30, Lemma 1.1] or [31, Lemma 2.6]).
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Lemma 2.1. (Local existence). Let Q@ C R be a bounded domain with smooth boundary. Suppose
that the parameters a,b,c,k,r > 0 and the assumptions (Hy) — (H,) hold. Assume that (ug, vy, wp) €

3
[W“’"(Q)] with uy, vo, wg = 0. Then there exists a constant Ty, € (0, 0] such that the problem (1.1)
has a unique nonnegative classical solution (u,v,w) and satisfies

(1, v, w) € [CO@X [0, Trng)) N € (@ X (0, Tonan) 1 L3 (10, Trn)s W)
and which is such that if T, < oo,
luC, Dlle=@ + VG, Dl + IWC, Dllwro) = 00 as t /7 Tax.
Moreover, if the initial data (uy, vy, wy) € [W“"’(Q)]3 with ug, vy = 0( 0) and wy > 0 in Q, then the
solution of (1.1) satisfies u,v,w > 0in Q X (0, T,ax)-

Lemma 2.2. ( [32, Lemma 2.2]) Let the assumptions in Lemma 2.1 hold. Then the solution (u,v,w) of
system (1.1) fulfills that
0<wx,t) <M forallxeQ,t>0, 2.1

where M := max{a, ||wol|.~}, and it also founds that

limsupw(x,t) <a forall x € Q. 2.2)

[—0o0
In order to prove our results, we will quote the following lemma.

Lemma 2.3. ( [33, Lemma 2.3]) Let T > 0and 7 € (0,T), assume that a,b > 0, andy : [0,T) — [0, 00)
is absolutely continuous and satisfies

V() + ay(t) < b(1)

with some nonnegative function b(t) € L}OC([O, 7)) fulfilling

1+T
f b(s)ds <b forall te€[0,T —7).
t
Then
y(t) < max {y(O) + b, 2 + Zb} forall te(0,T).
ar

Lemma 2.4. ( [34, Lemma 2.4]) Let T > 0andt € (0,T), assume that o, 8 > 0, and y : [0,T) — [0, 00)
is absolutely continuous and satisfies

V' (1) + a()y(t) < b(H)y(r) + c(t)

with the nonnegative functions a(t), b(t), c(t) € L} ([0, T)) fulfilling

loc

1+T
sup f b(s)ds <a forall te[0,T —71)
t

0<t<T
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and

I+T
sup f c(s)ds <pB forall te[0,T — 7).
t

0<t<T

Moreover, there also exists a positive constant p satisfies

t+T t+T
f a(s)ds — f b(s)ds >p forall te[0,T —1).
t t

Then
Be®

1—er

(1) < e (y(O) + +,8) forall t€(0,T).

Lemma 2.5. Under the assumptions in Theorem 1.1, the solution (u,v,w) of (1.1) fulfills

fu <C and fv <C forall te(0,Tu), (2.3)
Q Q

where C > 0 is a constant.

Proof. The first equation of (1.1) adds the second equation of (1.1) multiplied by b + 1 and adds the
third equation of (1.1) multiplied by k(b + 1), then integrating we have

if(u+(b+1)v+k(b+1)w)+f(cu+v+w)
dt le) Q

:(ka(b+1)+1)fw—k(b+1)fw2—k(b+1)frvw 24
Q Q Q

< (ka(b+ 1)+ 1)M|Q|.
Using Gronwall’s inequality to (2.4), we obtain (2.3) immediately. O

Next, we shall obtain W' bound for the prey w(:, £).

Lemma 2.6. Under the assumptions in Theorem 1.1 and (u,v,w) is a solution of (1.1), for any p > 1,
there exists a constant C > 0 such that

W, 0ll, < € forall t € (0, Tya). (2.5)

Proof. By the variation-of-constants method, w can be written as
!
w(-, 1) = eBPwy + f eBU=9A (aw —w? —uw — rvw) ,
0
using (2.1) and (2.3), then there exists a constant ¢; > 0 satisfies

||aw —w? —uw — rvw”1 < |lawl|; + ||w2||1 + [luw|l; + ||rvwlly < cy. (2.6)

According to standard L? — L9 estimates in [35, Lemma 1.3], there exist A > 0 and some constants
¢; > 0(i = 2,3) such that

!
‘ el
w.(-, DI, < ealwollieo + €2 f e~ (1 +(t—5) 1+2v) ||aw —w —uw — rvw”l
0

f
1+ L
< C2||W()||],oO + C]sz €_/W_s) (1 + (t - S) 1+2/’)
0

<c3

Electronic Research Archive Volume 30, Issue 5, 1954-1972.



1959

for all ¢ € (0, T},..x). Hence, the proof of (2.5) is completed. |
Next, we apply the method of [25, Lemma 2.3] to obtain the following estimates.

Lemma 2.7. Under the conditions in Theorem 1.1 and (u,v,w) is a solution of (1.1). Then there exists
a constant C > 0 such that

+T I+T
f f W <C and f f V< C forallt € (0, Ty — 1), (2.7)
t Q t Q

where T = min{l, T'"T}

Proof. Let A represents the self-adjoint realization of —A + ¢ ( [36, Lemma 3.1]) under homogeneous
Neumann boundary conditions in L*(2) and

0<d< min{ (2.8)

c 1 }
di(0) b+ Dna )’

where 17, > 0 is from (H,) and
d] (0) = Oma)jiw d] (W)

due to (H,) and Lemma 2.2. Since § > 0, A has an order-preserving bounded inverse A~! on L*(Q),
then there exists a constant ¢; > 0 such that

| A", < cillwll,  for all y € LA(Q) (2.9)

and
s

E = f‘/’ A <oy} forall y € LA(Q). (2.10)
Q

From (1.1), we have
(u+ b+ v+ kb + Dw),
= Adi(wW)u + (b + Dy} + k(b + D)dsw) — cu = v + k(b + 1) (aw — w* = row),
which can be rewritten as
(u+ (b + 1)y + k(b + Dw), + Ady(wWu + (b + Do (u)v + k(b + 1)dzw)
= 6(di(wyu + (b + Do)y + k(b + Ddsw) = cu — v + k(b + 1) (aw = w* = rvw) 2.11)
= (8di (W) = )+ (8(b + Ddy(u) = D + k(b + 1) (83w + aw — w* = rvw).

Noting the facts (2.1), (2.8) and (H;) — (H>), one can find ¢, := kM (b + 1)(éd5 + a) > 0 such that

(6dy(w) = O + (b + Ddy(u) — Dy + k(b + 1) (6d3w +aw—w? — rvw)
< (6d1(0) = Au + (5(b + Vs — 1) + €2 (2.12)

< 0.
Substituting (2.12) into (2.11), one has

u+ G+ 1)v+kb+ Hw), + Aldi(Wu + (b + Ddr(u)v + k(b + 1)d3w) < 3,
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hence, multiplying the above inequality by A~ (u + (b + 1)v + k(b + 1)w) > 0, we have

2dtf|ﬂ_2(u+(b+ Dy + k(b + Dw)[?

+ f w+ D+ Dv+k+ Dw)dywu + (b + Dda(u)v + k(b + 1d3w)
Q
< czfﬂ_l u+ D+ Dv+kd+Dw),
Q

which together with the fact (H;) — (H;), we can find d,(M) = Omil}w di(w) and c3 := min{d,(M), n;, d3}
such that o
1d
2dt

< czfﬂ_l(u+(b+ Dv + k(b + Dw).
Q

fl&»’{‘Z(u + b+ 1Dw+kb+ Dw) + cs f(u + b+ Dy +k(b+ DHw)?
Q (2.13)

By (2.9) and (2.10), we can obtain that
flﬂ Yu+ b+ v+ kb + DHw)f + czfﬂ (u+ b+ 1v+k(b+ Dw)

4C1
T f(u + b+ Dv+kb+ Dw)? + clcnglfllu + b+ v+ k(b+ Dw||,
Q

/\

2
< cﬁf(u+(b+ D+ k(b + Tywy? + 12
2 Q C3
Therefore, combining with (2.13), and denoting y;(?) := fg |ﬂ‘%(u + (b + 1)v + k(b + 1)w)|?, one has
2C%C%|Q|

C3

Y0 + 2_yl(;) + 3 f(u +(b+ Dy + k(b + Dw)* <
C1 Q

Then using Gronwall’s inequality implies y;(¢) < ¢4 with some constant ¢4 > 0, thus

fouzsf Tf(u+(b+1)v+k(b+1)w)2
t Q t Q

N0 | 26610l

C3 C3
2.2
c 2cscs|Q|
4 1 22 for all 7 € (0, Typur — 7),
C3 C3

because 7 < 1. Similarly, we have

t+7 2C2C2 Q
f fvz < G 4+ 22| | forallt € (0, T, ux — 7).
t Q 3

3

Hence, we can obtain (2.7). i
In addition, as the result of Lemma 2.7, we can deduce the following results.
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Lemma 2.8. Under the conditions in Theorem 1.1 and (u,v,w) is a solution of (1.1). Then there exists
a constant C > 0 such that

f f w2 <C forallt € (0, Tpa — 7). (2.14)

where T = min{1, %}.

Proof. Testing the third equation of (1.1) by —w,,, using Young’s inequality and (2.1), we have

ld =—d +
o = —d, a wax w Wy + uwwxx r vwwxx
d3fW +— w f
o
2 2 272
+ = w4+—fu2w2+ rfv2w2
ds Jg ds Jo dy Jo
2M? 2r2 M?
<—é w§x+—fu2+ 4 fv2+c1,
2 Ja dy Jo dy  Jo

, which yields

4 2M2
—fw +d3fwxx§— e fv2+201. (2.15)
ds  Jo

By the Gagliardo-Nirenberg inequality and the fact ||w|l, < M IQI%, there exist some constants ¢, c3 > 0
such that

2M2|Q|(a*+M?)
where ¢, = 'K—”+

d

2 2 2 3 2

fwx = [l < c2 (Iwasllaliwll, + IIWIIZ) < Wl + 3. (2.16)
Q

Combining (2.15) and (2.16), let ¢4 := 2c¢; + ¢3, then we have

4M? 4r*M?
w+fw +—f xx_—fu2+ ! fv2+c4. 2.17)
ds Q

Let y(t) := fgwi and b(t) := 4d—"f fgu + “’d—i” va + ¢4. From (2.17) we have

Y () + () + % f w2 < b(1) forallt e (0, T ), (2.18)
Q

by Lemma 2.7 implies there exists a constant ¢5 > 0 such that fz s fg(u2 +1?) < cs, therefore, we have
T AM? 1,7
f b(s) < cg = e rcr;ax{ r} +cy forallte (0,70 —7),
t 3

because 7 < 1. Using (2.18) and Lemma 2.3 to ensure that

y(t) < ¢7 := max {f(wo)i + ce, i + 2c6} forall € (0, T,..,).
Q T

Therefore, an integration of (2.18) over (¢, ¢ + 7) yields

y(t+T)+f y(s)+—f fwxx_y(t)+f Tb(s)SC7+c6

for all ¢ € (0, T,0x — 7), which in view of the nonnegativity of y implies (2.14). O
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3. Boundedness of solutions

In the first, we will obtain a priori L? — estimate of the predator u.

Lemma 3.1. Let the assumptions in Theorem 1.1 hold, then there exists a constant C > 0 such that
lu(-, D, < C  forallt e (0, T ). (3.1

Proof. Testing the first equation of (1.1) by u, integrating the result by part and using Young’s inequal-

ity, we obtain
1d
EELM2+CLM2+L611(W)M§
:—fdi(w)uuxwx+bfuv
Q Q

1 1 [ (d)(w))? b? c
<- | a 2, 1 2.2 _f 2 _f 2,
_ng; 1(w)ux+2£2 40 uwx+26 Qv +2 Qu

d d(w))* b?
th;u2+cfguz+j;dl(w)uisL(C;l((wv:)) uzwi+?fgv2, (3.2)

by Lemma 2.6 implies ||w,|l, < ¢; with some ¢; > 0, thus using (H;) and (2.1), we have from (3.2) that

d b?
— u2+cfu2+d1(M)fu§st||u||§ofw§+—fv2
dt Jo Q Q Q ¢ Jo

22 2 b2 2
SK1c1||u||w+—fv,
¢ Jo

which yields

(3.3)

max |d}(w
OSWSMI 1( )I

where K| := ion By the Gagliardo-Nirenberg inequality, Young’s inequality and (2.3), there
exist constants ¢; > 0(i = 2, 3) satisfy

(M)

4 2
Kicillullz, < e (Iluxlléllullf + IIMIIT) < lul; + cs.
This together with (3.3), one has
d di(M b?
— u2+cfu2+¥fuis—fv2+c3. 3.4)
dt Q Q 2 Q C 0
Using (2.7) and Lemma 2.3, we derive (3.1). O

We are now in the position to derive some estimates for u .

Lemma 3.2. Let the assumptions in Theorem 1.1 hold and (u,v,w) be a solution of (1.1). Then there
exists a constant C > 0 such that

f w2(,t) <C  forallt € (0, Ty, (3.5)
Q

1+T
f f ul ()< C forallt € (0, Tpu — 7) (3.6)
t Q
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and

luC, Dlle < € forall't € (0, Tiax), (3.7

where T = min{1, T’;‘”}.

Proof. Testing the first equation of (1.1) by —u,, and using Young’s inequality, we have

o f f uxx d1 Wty + di(Wuw e + 2d;(Wu,w, + d"(w)uw + by — cu)
_ 2 éf 2 (d/(W))z f c? )
< j; dOiE, + 5 | dionnd, +2 | e Pw? +2 T
(d'(W))2 (le"'(W))2 f »
+ 8 +2 1%
o di(w) H dl(W) o di(w)

3 ) 2 " (d ) f ¢ 2
< Sfdl(w)uxx+2||u||°° o dl( ) +2 dl(W)u
A f(d"( Wr f .
81lutx +2 i '
+ 8l f o s | —aom ™ 2 )z

From Lemma 2.6, we choose p = 2,4, then there exist ¢y, c; > 0 such that |[w,|l < ¢y, [[Wills < 2, we

obtain
d 3di(M
—fui LIS fuﬁx < 4K |lullZ, fwix + 16K ctllullZ, + 4K5 3 lullZ,
dt Jo 4 Q Q (3.8)
4b* , 4 ) '
+ 1 u-.
(M) Jo d\(M)
max |d} (w)|
where K, := % Using the Gagliardo-Nirenberg inequality and Lemma 3.1, for each £ > 0 one

can find some ¢, > 0 and ¢; > 0(i = 3,4, 5) such that

4 2
2 3 3 2 2
Il < c3 (||ux||;||u||f + ||u||1) < el + c. (3.9)

and

d (M
1(4 D2 + cs. (3.10)

16K2 2 2 < % % 2 <
rCilluls < ca iy lully + llullz | <

Using Lemma 3.1 again, for some c¢q > 0, we have |[u(-, ?)|| < c¢. Substituting (3.9)-(3.10) into (3.8),

we obtain
d; (M)
- f o i, < ARTellnl Bl + 4K el

4b> f 2.
v°+ cq,
di(M) Jq !

Using (3.1), for some cg, cg > 0, we obtain

(3.11)
+4K5csellull; +

42
where ¢7 := ¢s + 4K3c5c, + dC<M)
di(M)

2
4 ||uxx||2 + C9.

2 4 2 2
(4K3c3e + 1)l < cs (leallolilly + lull3) <
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Combining it with (3.11), there exists c¢;o > 0 satisfying

di(M
u§+fu§+—1( )fuix
Q Q 4 Q

3.12
< AK%&|luPlwl? + 4K e |w ||2+4—b2fv2+c o
= 1 xll2 xxllp 1CellWaxxllp dl(M) o 10-

From Lemma 2.8, one has ftm fgwix < ¢y; with some ¢;; > 0. Let a(?) := 1,b(t) := 4K28||wxx||§ and
8K|2m > O such thatfl a(s)ds—ft b(s)ds = 3 > 0.

Hence, using Lemma 2.4, we can derive the boundedness of fQ u)zc(-, t)forall ¢t € (0, T,,,). Furthermore,

. 4b?
c(t) = 4Klzc€||wxx||§+m |, V> +¢o, choosing & =

(3.6) can be obtained upon an integration in time for (3.12). Finally, using the boundedness of fg ul(-, 1)
and (3.9), which implies (3.7). O
Now we establish some estimates of v.

Lemma 3.3. Let the assumptions in Theorem 1.1 hold, then there exists a constant C > 0 such that

f V(1) <C  forallt € (0, Ty (3.13)
Q

and

+T
f f V(1) < C forallt€ (0, Ty — ), (3.14)
t Q

. T,
where T = min {1, A }

Proof. Testing the second equation of (1.1) by v, integrating and using Young’s inequality, we have

%%LVZ:—fQVx(dz(u)Vx‘Fdé(u)Wx)+kLWW—va
1 (@w)* , ,
- [ dtni+ g [ i+ [ S
k2M2
AN, f
3 s (dyw)* , , KM , 1 )
S—Zfdz(u)vx+j; A Vil + > Lu—ifv.

From (3.7), we can find a constant #* > 0 such that 0 < u < ess supg, u = |[u|l < u*. Using (H,), which
yields

_fv +f 3m fvi52K§||v||§||ux||§+k2M2fu2, (3.15)
2 le) Q

max_|d}(w)|
O<u<u*

where K3 := == Using the Gagliardo-Nirenberg inequality, there exist some constants ¢; >
0@ =1,2,3)such that

2 2
ME < e (Ivadlalvily + I7) < calivlla + 1) (3.16)
and
2 2
eIy < 3 (lneaallallzeally + llaedl1F)

€|

(3.17)
5 el + IQllluxllﬁ),

1 2
< 3 (5””)0{”2””)6”2 +
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where we use Young’s inequality and the Cauchy-Schwarz inequality. Using (3.5), there exists a con-
stant ¢, > 0 such that
iy < callliglla + 1). (3.18)

By Lemma 3.1, there exists ¢5 > 0 such that |[u(-, )|l < c¢s. Substituting (3.16) and (3.18) into (3.15)
and using Young’s inequality, we have

3
v+ f v2+% f v < 2K5coes(villy + D(llla + 1) + &> M? f u*
Q Q Q

Q

_m f 41{4c2c4 +1m f 5 (3.19)
—_— u,, + ce,
=2 Q
2(,‘ C. 4 4L C . .
where ¢ = k*M?c3 + 25 4m+4K;1 rKicdn , which yields
d 4K%c2c2 +
—fv2+fv2+mfvis—324 mfuix+c6.
dt Jg Q Q m Q
Using (3.6) and Lemma 2.3, we derive (3.13) and (3.14). O

Finally, we shall establish the estimate of ||v(:, 7)||c.

Lemma 3.4. Let the assumptions in Theorem 1.1 hold, then there exists a constant C > 0 such that
v, Dl £ C  forallte (0,T,,)- (3.20)

Proof. Testing the second equation of (1.1) by —v,, and using Young’s inequality yields

2dtf fvxx Ay (U)vyy + dy(U)vidyy + 2d(W)u,vy + d"(u)vu +kuw—v)
2
f dy (), + = f d>(un?, f (dz((l;)))
(d'(u))2 (a”’(u))2 szMZ ) f ,
ey +2 I
o du) ) o d(u) o
! ( [ (u ))2 (d’(u))z
B 2 Lol f @)~ .
2L Z(M)Vxx+ ||V||°o , dz( ) ” || i dz( )

(dy (u ))2 k> M?
+ 2|12 2 4 2[ 2 f 2,

From Lemmata 2.5, 3.2 and 3.3, there exists ¢; > 0(i = 1,2, 3) satisfies [|[v(-, 0)||; < c1, ||ux(-,t)||§ < ¢y,
Iv(-, HI? < c3. Using the Gagliardo-Nirenberg inequality, for each & > 0 one can find some ¢, > 0 and
¢; >0 =4,5,6,7,8) such that

4 2
2 3 3 2 2
VIS, < ca (IIVXIISIIVIll3 + IIVIII) < éllvall; + ce

and
m

3 1
2 211ul12 2
Vil < es (Ilvxx||2IIVI|2 + IIVIIZ) 16K2c;

”Vxx”z + Ce
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as well as
4
Nl < erlludBlleddls + lludly) < cs(luglls + 1).

From Lemma 3.1, for some c9 > 0, one has |[u(-, )|l < cg. Combining with the above inequalities and
using (H,), we conclude

d 2 2 2 2 2 2 2 2
g | vie2 | vis el + (4K3c. + 4Kescs) lunl + cro.
Q

max, 3 () 5 5 MM T )
where K, := v and cyg := 16K5crc6 + 4K c3cs + o 2. From (3.6), one has ft fguxx < ¢y
with some ¢;; > 0. Using Lemma 2.4, denoting a(t) := 2, b(t) := 4K3ellu.ll; and c(r) :=

(4K3c. + 4KGeses) luwl} + cio, choosing & = & such that [ a(s)ds — [T b(s)ds = 7 > 0,

therefore, we derive the boundedness of fQ vi(-, t). Finally, using the boundedness of fQ vi(-, 1) and the

Gagliardo-Nirenberg inequality, we obtain (3.20). O
We can now easily prove Theorem 1.1.

Proof of Theorem 1.1. From Lemmata 3.1 and 3.3, there exists a constant C > O satisfies ||u(-, )|, +

Iv(-, Dl < C for all £ € (0, Ty,y), then we have [w(-, 1)l < C ( [32, Lemma 3.1]), combining

Lemmata 3.2, 3.4 and 2.1, we can obtain Theorem 1.1 immediately. O

4. Global stability

In this section, we shall construct appropriate Lyapunov functional to derive the global stability
in Theorem 1.2.

Lemma 4.1. ( [26, Lemma 3.6]) Let the assumptions in Theorem 1.2 hold, then there exist 0 € (0, 1)
and C > 0 such that

[Py

Lemma 4.2. Leta,b,c,k > 0. Then

>
"8 @xit+1]) + [wll 2*"”2(Qx[n+1]) <C forallt>1. 4.1

d
dtfu—bfv—cf u, “4.2)
f fuw f 4.3)

ifw+fuw+rfvw+f(w—a)2:—af(w—a) (4.4)
dt Jo Q Q Q Q

Proof. Integrating the three equations of (1.1), respectively, we obtain (4.2)-(4.4). O
Lemma 4.3. Leta,r,dz > 0. Then

__flnw+d3f fu+rfv+f(w—a) 4.5)
Q Q
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Proof. By the third equation in (1.1), we make use of the positivity of w in Q X (0, o) to see that

df fd3wxx—w2—uw—rvw+aw
—— | lnw=-
dt ) o) w
W2
:—d3f—;+fu+rfv+f(w—a)
oW Q Q Q

forall r > 0. o
Combining Lemmata 4.2 and 4.3, when 2= “bk > 1, we have the following lemma.

(4.6)

Lemma 4.4. Under the assumptions in Theorem 1.2, there exists C > 0 such that

foofuﬁc 4.7)
0 Ja

and .
f fv <C 4.8)
0 Ja
as well as . .
f fwisc, f f(w—a)ZSC (4.9)
0 Ja 0 Ja
forallt > 0.
Proof. Using Lemmata 4.2 and 4.3, we have
d c ) w2
7 {au+zv+cw—calnw}+rc w+c | (W—a)” + cads —
FJo Q Q QW (4.10)
= —(E—mc—ab)fv
k o
c—abk abk

for all £ > 0. Since > 1, integrating (4.10) on [0, #) to obtain

o free foore [ [ [ foreer

+cad3ff ——rac—abff 4.11)
_afu0+—fv0+cfw0—acflnw0+acflnw
Q k Jo Q Q Q

forall ¢t > 0. Due to Inw < w for all w > 0, one has

fu+ fv+cfw+rcff W+cfvf(w—a)2
+cad3ff ——rac—ab)ff
(4.12)
c
1nw0+acf

<a Uy + — Vo + C
k
Inwg + acM|Q)|

Q Q fg
c
<a Uy + — Vo + C
Q k Jo Q
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for all ¢ > 0, which implies (4.8) and (4.9) hold. Integrating (4.2) on [0, f) to obtain

Lwcfotfgu:bfo’fgwfguo.

Using (4.8), we can obtain (4.7). The proof is completed.

Lemma 4.5. Under the assumptions in Theorem 1.2, there exists C > 0 satisfies

ffu<C fowfguzsc
[ [

and

forallt > 0.

(4.13)

(4.14)

Proof. By (3.7) and (3.20), for some cy, c; > 0, we have |[u(-, D)||e < c1, |[V(, Dlle < ¢;. Testing the first
and second equations in (1.1) by u and v, respectively, using Young’s inequality and integrating to see

that
2dtfu+cfu+fd1(w)u
:—fd{(w)uuxwx+bfuv
Q Q
1 (d;(w))? W2
Efdl(w) 2]; 4:00) +bfg;uv
1 2 1 (di(w w))* 2
SELdl(W)ux_'_E L dion) wx+b||v||mLu
and

1d 2 2 f 2
> 7 Qv +Lv + de(u)vx
:—fdé(u)vvxux+kfuvw
Q Q
1 (d5w)*
<= |d k
< Zf z(u) 2 e ux+ fguvw

1 ) (@) w)* ,
< Efgdz(u)vx e +kM||v||wf£; u.

Since (H;) — (H,), (2.1) and (3.7), which ylelds

—fu +2cfu +d1(M)fu <K fw§+2bc2fu,
Q Q

—fv+2fv+n1fv fu+2kMC2f
Q

Then using (4.7) and (4.9) imply (4.13) and (4.14).

(4.15)

(4.16)

O
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Lemma 4.6. Let the assumptions in Theorem 1.2 hold, the solution of (1.1) satisfies

lu(-, Dllw > 0 as t — oo, (4.17)
IV, Dlle =0 as t— oo (4.18)

and
w(-,1) —alle = 0 as t — co. (4.19)

Proof. Suppose that (4.17) is false, for some ¢; > 0, there exist (x;)icy C Q and (#)iey C (1, 00)
satisfying #; — oo as i — oo such that

lu(x;, )| > ¢ forall i € N.

From Lemma 4.1, we know that u is uniformly continuous in Q X (1, c0), therefore, for any i € N, we
can find some r; > 0 and 7; > O such that

lu(x, )| > % forall x € L, (x;) N Q and t € (¢, 1 + 11),

where L, (x;) denotes a line segment with x; as the center, r; as the radius and 2r; in total length and
hence

1i+T1 5 C%Cle
f flu(x, HI- > 0 forall i € N, (4.20)
t; Q

where ¢, := infiey |L,, (x;) N Q] is positive due to smoothness of Q2. By Lemma 4.5, we have

1i+T1
f f|M(X, N> -0 forall i — oo.
1 Q

Together with (4.20), this leads to a contradiction, thus (4.17) is established. Similarly, we can obtain
(4.18) and (4.19) immediately. O
Proof of Theorem 1.2. Lemma 4.6 derives the conclusions of Theorem 1.2.
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