The present paper is devoted to characterizing the weak core inverse and the weak core matrix using the core-EP decomposition. Some new characterizations of the weak core inverse are presented by using its range space, null space and matrix equations. Additionally, we give several new representations and properties of the weak core inverse. Finally, we consider several equivalent conditions for a matrix to be a weak core matrix.
Citation: Zhimei Fu, Kezheng Zuo, Yang Chen. Further characterizations of the weak core inverse of matrices and the weak core matrix[J]. AIMS Mathematics, 2022, 7(3): 3630-3647. doi: 10.3934/math.2022200
The present paper is devoted to characterizing the weak core inverse and the weak core matrix using the core-EP decomposition. Some new characterizations of the weak core inverse are presented by using its range space, null space and matrix equations. Additionally, we give several new representations and properties of the weak core inverse. Finally, we consider several equivalent conditions for a matrix to be a weak core matrix.
[1] | D. E. Ferreyra, F. E. Levis, A. N. Priori, N. Thome, The weak core inverse, Aequat. Math., 95 (2021), 351–373. doi: 10.1007/s00010-020-00752-z. doi: 10.1007/s00010-020-00752-z |
[2] | D. Mosi$\acute{c}$, J. Marovt, Weighted weak core inverse of operators, Linear Multilinear A., 2021, 1–23 doi: 10.1080/03081087.2021.1902462. doi: 10.1080/03081087.2021.1902462 |
[3] | R. A. Penrose, A generalized inverse for matrices, In: Mathematical proceedings of the Cambridge philosophical society, Cambridge University Press, 51 (1995), 406–413. |
[4] | A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications, New-York: Springer-Verlag, 2003. |
[5] | M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Am. Math. Mon., 65 (1958), 506–514. doi: 10.1080/00029890.1958.11991949. doi: 10.1080/00029890.1958.11991949 |
[6] | O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear A., 58 (2010), 681–697. doi: 10.1080/03081080902778222. |
[7] | K M. Prasad, K. S. Mohana. Core-EP inverse, Linear Multilinear A., 62 (2014), 792–802. doi: 10.1080/03081087.2013.791690. doi: 10.1080/03081087.2013.791690 |
[8] | S. B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575–580. doi: 10.1016/j.amc.2013.10.060. doi: 10.1016/j.amc.2013.10.060 |
[9] | H. X. Wang, J. L. Chen, Weak group inverse, Open Math., 16 (2018), 1218–1232. doi: 10.1515/math-2018-0100. |
[10] | H. X. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300. doi: 10.1016/j.laa.2016.08.008. doi: 10.1016/j.laa.2016.08.008 |
[11] | C. Y. Deng, H. K. Du, Representation of the Moore-Penrose inverse of $2\times2$ block operator valued matrices, J. Korean Math. Soc., 46 (2009), 1139–1150. doi: 10.4134/JKMS.2009.46.6.1139. doi: 10.4134/JKMS.2009.46.6.1139 |
[12] | D. E. Ferreyra, F. E. Levis, N. Thome, Characterizations of k-commutative egualities for some outer generalized inverse, Linear Multilinear A., 68 (2020), 177–192. doi: 10.1080/03081087.2018.1500994. doi: 10.1080/03081087.2018.1500994 |
[13] | H. F. Ma, A characterization and perturbation bounds for the weighted core-EP inverse, Quaest. Math., 43 (2020), 869–879. doi: 10.2989/16073606.2019.1584773. doi: 10.2989/16073606.2019.1584773 |
[14] | H. F. Ma, Characterizations and representations for the CMP inverse and its application, Linear Multilinear A., 2021, 1–16. doi: 10.1080/03081087.2021.1907275. |
[15] | H. F. Ma, T. T. Li, Characterizations and representations of the core inverse and its applications, Linear Multilinear A., 69 (2021), 93–103. doi: 10.1080/03081087.2019.1588847. doi: 10.1080/03081087.2019.1588847 |
[16] | H. F. Ma, X. S. Gao, P. S. Stanimirovi$\acute{c}$, Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications, Appl. Math. Comput., 378 (2020), 125196. doi: 10.1016/j.amc.2020.125196. |
[17] | D. Mosi$\acute{c}$, P. S Stanimirovi$\acute{c}$, Representations for the weak group inverse, Appl. Math. Comput., 397 (2021), 125957. doi: 10.1016/j.amc.2021.125957. |
[18] | D. Mosi$\acute{c}$, P. S Stanimirovi$\acute{c}$, Expressions and properties of weak core inverse, Appl. Math. Comput., 415 (2022), 126704. doi: 10.1016/j.amc.2021.126704. |
[19] | M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl., 436 (2012), 1909–1923. doi: 10.1016/j.laa.2011.09.004. doi: 10.1016/j.laa.2011.09.004 |
[20] | J. Benítez, E. Boasso, H. W. Jin, On one-sided $(B, C)$-inverse of arbitrary matrices, J. Linear Al., 32 (2017), 391–422. doi: 10.13001/1081-3810.3487. doi: 10.13001/1081-3810.3487 |
[21] | R. Bott, R. J. Duffin, On the algebra of networks, T. Am. Math. Soc., 74 (1953), 99–109. |
[22] | Y. Hui, H. X. Wang, K. Z. Zuo, Y. Chen, Further characterizations of the weak group inverse of matrices and the weak group matrix, AIMS Mathematics, 6 (2021), 9322–9342. doi: 10.3934/math.2021542. doi: 10.3934/math.2021542 |
[23] | C. D. Meyer, Limits and the index of a square matrix, SIAM J. Appl. Math., 26 (1974), 469–478. doi: 10.1137/0126044. doi: 10.1137/0126044 |
[24] | D. Mosi$\acute{c}$, I. I. Kyrchei$\acute{c}$, P. S Stanimirovi$\acute{c}$, Representations and properties for the MPCEP inverse, J. Appl. Math.Comput., 67 (2021), 101–130. doi: 10.1007/s12190-020-01481-x. doi: 10.1007/s12190-020-01481-x |
[25] | Y. X. Yuan, K. Z. Zuo, Compute $\lim_{\lambda \to 0}X(\lambda I_{p}+YAX)^{-1}Y $ by the product singular value decomposition, Linear Multilinear A., 64 (2016), 269–278. doi: 10.1080/03081087.2015.1034641. doi: 10.1080/03081087.2015.1034641 |
[26] | H. X. Wang, X. J. Liu, The weak group matrix, Aequat. Math., 93 (2019), 1261–1273. doi: 10.1007/s00010-019-00639-8. |