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1. Introduction

The weak core inverse was introduced in [1] where the authors presented some characterizations
and properties. In [2], the authors introduced an extension of the weak core inverse. Continuing
previous research about the weak core inverse, our purpose is to present new characterizations and
representations of the weak core inverse. Additionally, we also give several equivalent conditions for a
matrix to be a weak core matrix.

Let Cm×n be the set of all m×n complex matrices and Z+ denotes the set of all positive integers. The
symbols R(A),N(A), A∗, r(A) and In will denote the range space, null space, conjugate transpose, rank
of A ∈ Cm×n and the identity matrix of order n. Ind(A) means the index of A ∈ Cn×n. Let Cn×n

k be the set
consisting of all n × n complex matrices with index k. The symbol dim(S ) represents the dimension of
a subspace S ⊆ Cn. PL stands for the orthogonal projection onto the subspace L. PA, PA∗ respectively
denote the orthogonal projection onto R(A) and R(A∗), i.e., PA = AA†, PA∗ = A†A .

We will now introduce definitions of several generalized inverses that will be used throughout the
paper. The Moore-Penrose inverse of A ∈ Cm×n, denoted by A†, is defined as the unique matrix X ∈
Cn×m satisfying [3]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.
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In particular, X is an outer inverse of A which is denoted as A(2) if XAX = X. For any matrix
A ∈ Cm×n with r(A) = r, let T ⊆ Cn, S ⊆ Cm be two subspaces such that dim(T ) = t ≤ r and
dim(S ) = m − t. Then A has an outer inverse X that satisfies R(X) = T and N(X) = S if and only if
AT ⊕ S = Cm. In that case X is unique and denoted by A(2)

T,S [4].
The Drazin inverse of A ∈ Cn×n

k , denoted by AD, is the unique matrix X ∈ Cn×n satisfying [5]:
XAX = X, AX = XA, XAk+1 = Ak.

For any matrix A ∈ Cn×n
1 , a new generalized inverse, which is called core inverse [6] was introduced.

Two other generalizations of the core inverse for A ∈ Cn×n
k such as core-EP inverse [7], DMP inverse [8]

were also introduced.
In 2018, Wang and Chen [9] defined the weak group inverse of A ∈ Cn×n

k , denoted by Aw©, as
the unique matrix X ∈ Cn×n such that [9]: AX2 = X, AX = A †©A. Moreover, it was verified that
Aw© = (A †©)2A.

Recently, Ferreyra et al. introduced a new generalization of core inverse called the weak core inverse
of A ∈ Cn×n

k , denoted by Aw©,†(or, in short, WC inverse). It is defined as the unique matrix X ∈ Cn×n

satisfying [1]:
XAX = X, AX = CA†, XA = ADC,

where C = AAw©A. Moreover, it is proved that Aw©,† = ADCA† = Aw©AA†.
The structure of this paper is as follows: In Section 2, we give some preliminaries which will be

made use of later in this paper. In Section 3, we discuss some characterizations of the WC inverse
based on its range space, null space and matrix equations. In Section 4, several new representations
of the WC inverse are proposed. Section 5 is devoted to deriving some properties of the WC inverse
by the core-EP decomposition. Moreover, in Section 6, we present several equivalent conditions for a
matrix to be a weak core matrix.

2. Preliminaries

For convenience, we will use the following notations: CCM
n , CEP

n , CP
n and COP

n will denote the
subsets of Cn×n consisting of core matrices, EP matrices, idempotent matrices and Hermitian
idempotent matrices, respectively, i.e.,

• CCM
n = {A | A ∈ Cn×n, r(A2) = r(A)};

• CEP
n = {A | A ∈ Cn×n,R(A) = R(A∗)};

• CP
n = {A | A ∈ Cn×n, A2 = A};

• COP
n = {A | A ∈ Cn×n, A2 = A = A∗}.

Before giving characterizations of the WC inverse, we first present the following auxiliary lemmas
which will be repeatedly used throughout this paper.

Lemma 2.1. [10] Let A ∈ Cn×n
k . Then A can be represented as

A = U
[

T S
0 N

]
U∗, (2.1)

where T ∈ Ct×t is nonsingular and t = r(T ) = r(Ak) , N is nilpotent with index k, and U ∈ Cn×n is
unitary.
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Moreover, the representation of A given by (2.1) is unique [10, Theorem 2.4]. In that case, we have
that

Ak = U
[

T k T̃
0 0

]
U∗, (2.2)

where T̃ =
k−1∑
j=0

T jS Nk−1− j.

Lemma 2.2. [1, 9–12] Let A ∈ Cn×n
k be given by (2.1). Then :

A† = U
[

T ∗4 −T ∗4S N†

(In−t − N†N)S ∗4 N† − (In−t − N†N)S ∗4S N†

]
U∗, (2.3)

AD = U
[

T−1 (T k+1)−1T̃
0 0

]
U∗, (2.4)

A †© = U
[

T−1 0
0 0

]
U∗, (2.5)

AD,† = U
[

T−1 (T k+1)−1T̃ NN†

0 0

]
U∗, (2.6)

A†,D = U
[

T ∗4 T ∗4T−kT̃
(In−t − N†N)S ∗4 (In−t − N†N)S ∗4T−kT̃

]
U∗, (2.7)

Aw© = U
[

T−1 T−2S
0 0

]
U∗, (2.8)

.

Aw©,† = U
[

T−1 T−2S NN†

0 0

]
U∗, (2.9)

where T̃ =
k−1∑
j=0

T jS Nk−1− j and 4 = [TT ∗ + S (In−t − N†N)S ∗]−1.

T̃ and 4 will be often used throughout this paper.

Lemma 2.3. [1] Let A ∈ Cn×n
k . Then

(a) Aw©,† = A(2)
R(Ak), N((Ak)∗A2A†)

;
(b) AAw©,† = PR(Ak), N((Ak)∗A2A†);
(c) Aw©,†A = PR(Ak), N((Ak)∗A2).

Lemma 2.4. Let A ∈ Cn×n
k and C = AAw©A. The following conditions hold:

(a) [1] Aw©,† = (A †©)2APA;
(b) [1] r(Aw©,†) = r(Ak);
(c) [1]CA†C = C;
(d) [9] Aw©Ak+1 = Ak;
(e) Ck = AkAw©A.

Proof. Item (e) can be directly verified by (2.1), (2.2) and (2.8). �
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3. Some characterizations of the WC inverse

Applying existing results for the WC inverse with respect to R(X) = R(Ak) and
N(X) = N((Ak)∗A2A†), some new results can be obtained for the WC inverse in the next result.

Theorem 3.1. Let A ∈ Cn×n
k and C = AAw©A. The following statements are equivalent:

(a) X = Aw©,†;
(b) N(X) = N((Ak)∗A2A†) and XAA∗ = Aw©AA∗;
(c) N(X) = N((Ak)∗A2A†) and XA = Aw©A;
(d) R(X) = R(Ak) and A∗AX = A∗CA†;
(e) R(X) = R(Ak) and AX = CA†;
(f) R(X) = R(Ak) and AkX = CkA†;
(g) R(X) = R(Ak), N(X) = N((Ak)∗A2A†) and XAAw© = Aw©;
(h) R(X) = R(Ak), N(X) = N((Ak)∗A2A†) and XAk+1 = Ak.

Proof. (a) ⇒ (b). By the definition of Aw©,†, we have that XAA∗ = ADCA∗ = ADAAw©AA∗ = Aw©AA∗.
Hence, by (a) of Lemma 2.3, we now obtain that (b) holds.

(b)⇒ (c). Postmultiplying XAA∗ = Aw©AA∗ by (A†)∗, we obtain that XA = Aw©A.
(c) ⇒ (d). From N(X) = N((Ak)∗A2A†), we have that N(AA†) ⊆ N((Ak)∗A2A†) = N(X), which

leads to X = XAA†. Thus we get that X = XAA† = Aw©AA† = Aw©,† by XA = Aw©A. Hence, by the
definition of Aw©,† and (a) of Lemma 2.3, we have that (d) holds.

(d)⇒ (e). Evidently.
(e) ⇒ ( f ). Since C = AAw©A and Ck = AkAw©A, premultiplying AX = CA† by Ak−1, we have that

AkX = CkA†.
( f ) ⇒ (g). From (2.2) and R(X) = R(Ak), we can set X = U

[
X1 X2

0 0

]
U∗, where X1 ∈ C

t×t,

X2 ∈ C
t×(n−t) and t = r(Ak). Furthermore, it follows from AkX = CkA† and (2.9) that X = Aw©,†.

Therefore, by the definition of Aw©,† and (a) of Lemma 2.3, we obtain that (g) holds.
(g) ⇒ (h). It follows from Aw©Ak+1 = Ak and XAAw© = Aw© that XAk+1 = XAAw©Ak+1 = Aw©Ak+1 =

Ak.
(h) ⇒ (a). By R(X) = R(Ak) and XAk+1 = Ak, we get that XAX = X. Hence, by (a) of Lemma 2.3,

we get that X = Aw©,†. �

Now we will consider other characterizations of the WC inverse by the fact that Aw©,†AAw©,† = Aw©,†.

Theorem 3.2. Let A ∈ Cn×n
k and C = AAw©A. The following statements are equivalent:

(a) X = Aw©,†;
(b) XAX = X, R(X) = R(Ak) and N(X) = N((Ak)∗A2A†);
(c) XAX = X, R(X) = R(Ak) and AX = CA†;
(d) XAX = X, AX = CA† and XAk = Aw©Ak;
(e) XAX = X, XA = Aw©A and AkX = CkA†;
(f) XAX = X, XA = Aw©A and N(X) = N((Ak)∗A2A†).

Proof. (a)⇒ (b). The proof can be demonstrated by (a) of Lemma 2.3.
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(b)⇒ (c). By the definition of Aw©,† and (b) of Lemma 2.3, we get that AX ∈ CP
n , R(AX) = AR(X) =

R(Ak+1) = R(Ak) = R(AAw©,†) = R(CA†) and N(AX) = N(X) = N((Ak)∗A2A†) = N(AAw©,†) =

N(CA†). On the other hand, Lemma 2.4 (c) implies CA† ∈ CP
n , hence AX = CA†.

(c) ⇒ (d). By item (c) of Lemma 2.3, we obtain that R(X) = R(Ak) = R(Aw©,†A). So we get that
Aw©,†AX = X, which implies that XAk = Aw©,†AXAk = Aw©,†CA†Ak = Aw©,†AAw©AA†Ak = Aw©Ak.

(d) ⇒ (e). By conditions and AAw© = Ak(Aw©)k, we can infer that X = XCA† = XAAw©AA† =

XAk(Aw©)kAA† = Aw©Ak(Aw©)kAA† = Aw©,†. Hence, by Aw©,† = Aw©AA† and AkAw©A = Ck, we obtain
that (e) holds.

(e)⇒ ( f ). Since XAX = X, XA = Aw©A, we have that R(X) = R(XA) = R(Aw©A) = R(Ak). We now
obtain that X = Aw©,† by ( f ) of Theorem 3.1. Hence ( f ) holds by (a) of Lemma 2.3.

( f )⇒ (a). It follows from XAX = X thatN(AX) = N(X), by conditions and (a) of Lemma 2.3. We
now obtain that X = XAX = Aw©AX = Aw©AA†AX = Aw©,†PR(AX), N(AX) = Aw©,†. �

Notice the fact that XAk+1 = Ak if X = Aw©,†. Therefore, we will characterize the WC inverse in
terms of Aw©,†Ak+1 = Ak.

Theorem 3.3. Let A ∈ Cn×n
k and C = AAw©A. The following statements are equivalent:

(a) X = Aw©,†;
(b) XAk+1 = Ak, A∗AX = A∗CA† and r(X) = r(Ak);
(c) XAk+1 = Ak, AX = CA† and r(X) = r(Ak);
(d) XAk+1 = Ak, AkX = CkA† and r(X) = r(Ak).

Proof. (a)⇒ (b). Since Aw©,† = Aw©AA†, we can show that XAk+1 = Ak, A∗AX = A∗CA†. Then, by (b)
of Lemma 2.4, we get that (b) holds.

(b)⇒ (c). Obviously.
(c)⇒ (d). Premultiplying AX = CA† by Ak−1, we have that AkX = CkA† from AkAw©A = Ck.
(d) ⇒ (a). It follows from XAk+1 = Ak and r(X) = r(Ak) that R(X) = R(Ak). Hence, we obtain that

X = Aw©,† from ( f ) of Theorem 3.1. �

In the following example, we show that the condition r(X) = r(Ak) in Theorem 3.3 is necessary.

Example 3.4. Let

A =


1 0 0
0 0 3
0 0 0

 , X =


1 0 0
0 0 2
0 0 0

 .
Then Ind(A) = 2,

A† =


1 0 0
0 0 0
0 1/3 0

 , C =


1 0 0
0 0 0
0 0 0

 and Aw©,† =


1 0 0
0 0 0
0 0 0

 .
It can be directly verified that XA3 = A2, A∗AX = A∗CA† and r(X) , r(A2), but X , Aw©,†. The

other cases follow similarly.

By Lemma 2.3, it is clear that AX = PR(Ak), N((Ak)∗A2A†) and XA = PR(Ak), N((Ak)∗A2) if X = Aw©,†.
However, the converse is invalid as shown in the next example:
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Example 3.5. Let A, X be the same as in Example 3.4. Then

AX =


1 0 0
0 0 0
0 0 0

 , XA =


1 0 0
0 0 0
0 0 0

 and Aw©,† =


1 0 0
0 0 0
0 0 0

 .
It can be directly verified that AX = PR(A2), N((A2)∗A2A†) and XA = PR(A2), N((A2)∗A2), but X , Aw©,†.

In the next result, we will present some new equivalent conditions for the converse implication:

Theorem 3.6. Let A ∈ Cn×n
k and X ∈ Cn×n. The following statements are equivalent:

(a) X = Aw©,†;
(b) AX = PR(Ak), N((Ak)∗A2A†), XA = PR(Ak), N((Ak)∗A2) and r(X) = r(Ak);
(c) AX = PR(Ak), N((Ak)∗A2A†), XA = PR(Ak), N((Ak)∗A2) and XAX = X;
(d) AX = PR(Ak), N((Ak)∗A2A†), XA = PR(Ak), N((Ak)∗A2) and AX2 = X.

Proof. (a)⇒ (b). The proof can be demonstrated by (b) and (c) of Lemma 2.3 and (b) of Lemma 2.4.
(b) ⇒ (c). By R(XA) = R(Ak) and r(X) = r(Ak), we obtain that R(X) = R(XA) = R(Ak), hence we

further derive that XAX = X.
(c)⇒ (d). By conditions and (a) of Lemma 2.3, we have that X = Aw©,†. Therefore, by (2.9), it can

be directly verified that AX2 = X.
(d) ⇒ (a). From AX2 = X, we have that X = AX2 = A2X3 = · · · = AkXk+1, which implies

R(X) ⊆ R(Ak). Combining with the condition R(Ak) = R(XA) ⊆ R(X), we get that R(X) = R(Ak).

From (2.2), we now set X = U
[

X1 X2

0 0

]
U∗, where X1 ∈ C

t×t, X2 ∈ C
t×(n−t) and t = r(Ak). On the other

hand, it follows from N(AX) = N((Ak)∗A2A†) that (Ak)∗A2A† = (Ak)∗A2X, which yields X1 = T−1 and
X2 = T−2S NN†. Therefore, by (2.9), we obtain that X = Aw©,†. �

In [1], the authors introduced the definition of Aw©,† with an algebraic approach. In the next result,
we will consider characterization of Aw©,† with a geometrical point of view.

Theorem 3.7. Let A ∈ Cn×n
k . Then:

(a) Aw©,† is the unique matrix X that satisfies:

AX = PR(Ak), N((Ak)∗A2A†), R(X) ⊆ R(Ak). (3.1)

(b) Aw©,† is the unique matrix X that satisfies:

XA = PR(Ak), N((Ak)∗A2), N(A∗) ⊆ N(X). (3.2)

Proof. (a). Since R(AD) = R(Ak), it is a consequence of [2, Corollary 3.2] by properities of Drazin and
MP inverse.

(b). Since items (c) of Lemma 2.3, Aw©,† satisfies XA = PR(Ak), N((Ak)∗A2). Additionally, we derive that
N(A∗) = N(A†) ⊆ N(Aw©AA†) = N(X). Now it remains to prove that X is unique.

Assume that X1, X2 satisfy (3.2), then X1A = X2A, N(A∗) ⊆ N(X1) and N(A∗) ⊆ N(X2).
Furthermore, we get that (X1 − X2)A = 0 and R(X∗i ) ⊆ R(A) for i = 1, 2, which further imply that
A∗(X∗1 − X∗2) = 0 and R(X∗1 − X∗2) ⊆ R(A). Therefore we have that
R(X∗1 − X∗2) ⊆ R(A) ∩ N(A∗) = R(A) ∩ R(A)⊥ = {0}. Thus, X∗1 = X∗2, i.e., X1 = X2. �
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Remark 3.8. In Theorem 3.7, R(X) ⊆ R(Ak) in (3.1) can be replaced by R(X) = R(Ak). However, if we
replace N(A∗) ⊆ N(X) with N(A∗) = N(X) in (3.2), item (b) of Theorem 3.7 does not hold.

Characterizations of some generalized inverses by using its block matrices have been investigated
in [13–17]. In [18, Theorem 3.2], the authors presented a characterization for the WC inverse using its
block matrices. Next we will give another proof of it by using characterization of projection operator.

Theorem 3.9. Let A ∈ Cn×n
k and r(Ak) = t. Then there exist a unique matrix P such that

P2 = P, PAk = 0, (Ak)∗A2P = 0, r(P) = n − t, (3.3)

a unique matrix Q such that

Q2 = Q, QAk = 0, (Ak)∗A2A†Q = 0, r(Q) = n − t, (3.4)

and a unique matrix X such that

r
([

A I − Q
I − P X

])
= r(A). (3.5)

Furthermore, X is the WC inverse Aw©,† of A and

P = PN((Ak)∗A2), R(Ak), Q = PN((Ak)∗A2A†), R(Ak). (3.6)

Proof. It is not difficult to prove that

the condition (3.3) hold ⇐⇒ (I − P)2 = I − P, (I − P)Ak = Ak,

(Ak)∗A2(I − P) = (Ak)∗A2, r(P) = n − t

⇐⇒ I − P = PR(Ak), N((Ak)∗A2)

⇐⇒ P = PN((Ak)∗A2), R(Ak).

Similarly, we can show that (3.4) have the unique solution Q = PN((Ak)∗A2A†), R(Ak).
Furthermore, comparing (3.6) and items (b) and (c) of Lemma 2.3 immediately leads to the

conclusion that

r
([

A I − Q
I − P X

])
= r

([
A AAw©,†

Aw©,†A X

])
= r(A) + r(X − Aw©,†).

By (3.5), we obtain that X = Aw©,†. �

4. Some representations of the WC inverse

In [19], Drazin introduced the (b, c)-inverse in semigroup. In [20], Benítez et al. investigated the
(B,C)-inverse of A ∈ Cm×n, as the unique matrix X ∈ Cn×m satisfying [20]:

CAX = C, XAB = B, R(X) = R(B), N(X) = N(C),

where B,C ∈ Cn×m. In the next result, we will show that the WC inverse is a special (B,C)-inverse.
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Theorem 4.1. Let A ∈ Cn×n
k . Then

Aw©,† = A(Ak ,(Ak)∗A2A†).

Proof. According to Lemma 2.3, we get that

R(Aw©,†) = R(Ak), N(Aw©,†) = N((Ak)∗A2A†)).

Observe that Aw©,†AAk = Aw©Ak+1 = Ak and (Ak)∗A2A†AAw©,† = (Ak)∗A2Aw©AA† = (Ak)∗A2A†. Thus,
we obtain Aw©,† = A(Ak ,(Ak)∗A2A†). �

In [21], the authors introduced the Bott-Duffin inverse of A ∈ Cn×n when APL + PL⊥ is nonsingular,
i.e., A(−1)

L = PL(APL + PL⊥)−1 = PL(APL + I−PL)−1. In [22], the authors showed the weak group inverse
by a special Bott-Duffin inverse. Next we will show that the WC inverse of A is indeed the Bott-Duffin
inverse of A2 with respect to R(Ak).

Theorem 4.2. Let A ∈ Cn×n
k be given by (2.1). Then

Aw©,† = (A2)(−1)
(R(Ak))APA = (PAk A2PAk)†APA. (4.1)

Proof. It follows from (2.3) and (2.2) that

PA = U
[

It 0
0 NN†

]
U∗, (4.2)

PAk = U
[

It 0
0 0

]
U∗. (4.3)

We now obtain that

(A2)(−1)
(R(Ak))APA = PAk(A2PAk + I − PAk)−1APA

= U
[

It 0
0 0

] [
T 2 0
0 In−t

]−1 [
T S
0 N

] [
It 0
0 NN†

]
U∗

= U
[

T−1 T−2S NN†

0 0

]
U∗

= Aw©,†.

Similarly, by a direct calculation, we can derive that Aw©,† = (PAk A2PAk)†APA. �

Working with the fact that P = PN((Ak)∗A2), R(Ak) and Q = PN((Ak)∗A2A†), R(Ak) in Theorem 3.9, we will
consider other representations of Aw©,† in the next theorem.

Theorem 4.3. Let A ∈ Cn×n
k and P = PN((Ak)∗A2), R(Ak), Q = PN((Ak)∗A2A†), R(Ak). Then for any a, b , 0, we

have
Aw©,† = (A + aP)−1(I − Q) = (I − P)(A + bQ)−1. (4.4)
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Proof. From items (b) and (c) of Lemma 2.3, it is not difficult to conclude that

(A + aP)Aw©,† = I − Q.

Now we only need to show the invertibility of A + aP. Assume that α = U
[
α1

α2

]
∈ Cn such that

(A + aP)α = 0, i.e., Aα = −aPα, where α1 ∈ C
p, α2 ∈ C

n−p. Now it follows from condition (c) of
Lemma 2.3 and (3.6) that[

T S
0 N

] [
α1

α2

]
= −a

[
0 −T−1S − T−2S N
0 I

] [
α1

α2

]
,

implying α1 = 0 and α2 = 0 since a , 0, N is nilpotent and T is non singular. Thus A + aP is
nonsingular.

Analogously, we can prove that A + bQ is invertible and Aw©,† = (I − P)(A + bQ)−1. �

The limit expressions for some generalized inverses of matrices have been given in [14–17, 23, 24].
Similarly, the WC inverse can also be characterized as limit value as shown in the next result:

Theorem 4.4. Let A ∈ Cn×n
k . Then:

(a) Aw©,† = limλ→0 Ak(λIn + (Ak)∗Ak+2)−1(Ak)∗A2A∗(λIn + AA∗)−1;
(b) Aw©,† = limλ→0 Ak(Ak)∗A(λIn + Ak+1(Ak)∗A)−1AA∗(λIn + AA∗)−1;
(c) Aw©,† = limλ→0(λIn + Ak(Ak)∗A2)−1Ak(Ak)∗A2A∗(λIn + AA∗)−1;
(d) Aw©,† = limλ→0 Ak(Ak)∗A2A∗(λIn + AA∗)−1(λIn + Ak+1(Ak)∗A2A∗(λIn + AA∗)−1)−1.

Proof. According to condition (a) of Lemma 2.3, it is not hard to show that

Aw©,† = A(2)
R(Ak), N((Ak)∗A2A†)

= A(2)
R(Ak(Ak)∗A2A†), N(Ak(Ak)∗A2A†)

.

Thus, by [25, Theorem 2.1], we have the following results:
(a) Let X = Ak, Y = (Ak)∗A2A† and by A† = limλ→0 A∗(λIn + AA∗)−1. We have

Aw©,† = limλ→0 Ak(λIn + (Ak)∗Ak+2)−1(Ak)∗A2A∗(λIn + AA∗)−1.

(b) Let X = Ak(Ak)∗A, Y = AA† and by A† = limλ→0 A∗(λIn + AA∗)−1. We have

Aw©,† = limλ→0 Ak(Ak)∗A(λIn + Ak+1(Ak)∗A)−1AA∗(λIn + AA∗)−1.

(c) Let X = In, Y = Ak(Ak)∗A2A† and by A† = limλ→0 A∗(λIn + AA∗)−1. We have

Aw©,† = limλ→0(λIn + Ak(Ak)∗A2)−1Ak(Ak)∗A2A∗(λIn + AA∗)−1.

(d) Let X = Ak(Ak)∗A2A†, Y = In and by A† = limλ→0 A∗(λIn + AA∗)−1. We have

Aw©,† = limλ→0 Ak(Ak)∗A2A∗(λIn + AA∗)−1(λIn + Ak+1(Ak)∗A2A∗(λIn + AA∗)−1)−1.

�

We end up this section with three examples of computing the WC inverse of a matrix using three
different expressions in Theorems 4.2–4.4.
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Example 4.5. Let

A =


2 2 1 0
3 4 2 0
0 0 0 1
0 0 0 0

 . (4.5)

Then Ind(A) = 2 and the weak core inverse of A is

Aw©,† = A2(A4)†A2A† =


2 −1 −1/2 0
−3/2 1 1/2 0

0 0 0 0
0 0 0 0

 .
Firstly, using the expression (4.1) to compute the WC inverse of A. Then

(A2PA2 + I − PA2)−1 =


11/2 −3 0 0
−9/2 5/2 0 0

0 0 1 0
0 0 0 1

 and (PA2 A2PA2)† =


11/2 −3 0 0
−9/2 5/2 0 0

0 0 0 0
0 0 0 0

 .
After simplification, it follows that (A2)(−1)

(R(A2))APA = Aw©,† and (PA2 A2PA2)†APA = Aw©,†.

Secondly, using the expression (4.4), we obtain

(A − 6P)−1 =


2 −1 −1/2 −19/12
−3/2 1 7/12 97/72

0 0 −1/6 −1/36
0 0 0 −1/6

 and (A +
1
5

Q)−1 =


2 −1 −1/2 5/2
−3/2 1 −2 10

0 0 5 −25
0 0 0 5

 .
Therefore, it can be directly verified (A − 6P)−1(I − Q) = Aw©,†, (I − P)(A + 1

5 Q)−1 = Aw©,†.
Finally, using the limit expressions of item (a) in Theorem 4.4.

Let B = A2(λIn + (A2)∗A4)−1(A2)∗A2A∗(λIn + AA∗)−1, then

B = A2(λIn + (A2)∗A4)−1(A2)∗A2A∗(λIn + AA∗)−1

=


2(30321λ2 + 5361λ + 580)/λ1 2(54629λ2 + 6699λ − 290)/λ1 (1305λ − 58)/λ2 0

(110503λ2 + 19405λ − 870)/λ1 4(49773λ2 + 6090λ + 145)/λ1 (2378λ + 58)/λ2 0
0 0 0 0
0 0 0 0

 .
where λ1 = λ4 + 38734λ3 + 1470569λ2 + 197888λ + 580, λ2 = λ3 + 38697λ2 + 38812λ + 116.

After simplification, it follows that

limλ→0 B = limλ→0 A2(λIn + (A2)∗A4)−1(A2)∗A2A∗(λIn + AA∗)−1 = Aw©,†.

The other cases in Theorem 4.4 can be similarly verified.
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5. Some properties of the WC inverse

In this section, we discuss some properties of the WC inverse and consider the connection between
the WC inverse and other known classes of matrices.

Lemma 5.1. Let A ∈ Cn×n
k be given by (2.1). Then:

(a) A ∈ CEP
n ⇔ S = 0 and N = 0;

(b) A ∈ CP
n ⇔ T = It and N = 0;

(c) A ∈ COP
n ⇔ T = It, S = 0 and N = 0.

Proof. (a) The proof can be easily verified from (2.1) and (2.3).
(b) By (2.1), we obtain that A ∈ CP

n is equivalent with

U
[

T 2 TS + S N
0 N2

]
U∗ = U

[
T S
0 N

]
U∗,

which is further equivalent with T 2 = T , TS + S N = S and N2 = N. Hence, by non singularity of T
and Nk = 0, we can conclude that A ∈ CP

n if and only if T = It and N = 0.
(c) Since COP

n ⊆ C
P
n , it is a direct consequence of item (b) and (2.1). �

Theorem 5.2. Let A ∈ Cn×n
k be given by (2.1). The following statements hold:

(a) Aw©,† = 0⇔ A is nilpotent;
(b) Aw©,† = A⇔ A ∈ CEP

n and A3 = A;
(c) Aw©,† = A∗ ⇔ A ∈ CEP

n and AA∗ = PAk ;
(d) Aw©,† = PA ⇔ A ∈ CP

n;
(e) Aw©,† = PA∗ ⇔ A ∈ COP

n .

Proof. (a) By (2.1) and (2.9), we directly get that

Aw©,† = 0 ⇐⇒ r(Ak) = t = 0
⇐⇒ A is nilpotent.

(b) It follows (2.1), (2.9) and (a) of lemma 5.1 that

Aw©,† = A ⇐⇒ U
[

T−1 T−2S NN†

0 0

]
U∗ = U

[
T S
0 N

]
U∗

⇐⇒ S = 0 , N = 0 and T 3 = T

⇐⇒ A ∈ CEP
n and A3 = A.

(c) By (2.1), (2.9) and (a) of lemma 5.1, we have that

Aw©,† = A∗ ⇐⇒ U
[

T−1 T−2S NN†

0 0

]
U∗ = U

[
T ∗ 0
S ∗ N∗

]
U∗

⇐⇒ S = 0 , N = 0 and TT ∗ = It

⇐⇒ A ∈ CEP
n and AA∗ = PAk .
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(d) From (2.9), (4.2) and (b) of lemma 5.1, we obtain that

Aw©,† = PA ⇐⇒ U
[

T−1 T−2S NN†

0 0

]
U∗ = U

[
It 0
0 NN†

]
U∗

⇐⇒ T = It, N = 0
⇐⇒ A ∈ CP

n .

(e) It follows from (2.1) and (2.3) that

PA∗ = A†A = U
[

T ∗4T T ∗4S (In−t − N†N)
(In−t − N†N)S ∗4T N†N + (In−t − N†N)S ∗4S (In−t − N†N)

]
U∗. (5.1)

By (2.9) and (5.1), we now get that Aw©,† = PA∗ is equivalent with

U
[

T−1 T−2S NN†

0 0

]
U∗ = U

[
T ∗4T T ∗4S (In−t − N†N)

(In−t − N†N)S ∗4T N†N + (In−t − N†N)S ∗4S (In−t − N†N)

]
U∗,

which is further equivalent with T−1 = T ∗4T , (In−t−N†N)S ∗4T = 0 and N†N+(In−t−N†N)S ∗4S (In−t−

N†N) = 0. Hence, by nonsingularity of 4T and (c) of lemma 5.1, we can conclude that Aw©,† = PA∗ if
and only if A ∈ COP

n . �

From Lemma 2.3, we know that both AAw©,† and Aw©,†A are oblique projectors. The next theorem
will further discuss other characteriations for AAw©,† and Aw©,†A.

Theorem 5.3. Let A ∈ Cn×n
k be given by (2.1). The following statements hold:

(a) AAw©,† = PA ⇔ A ∈ CCM
n ;

(c) Aw©,†A = PA ⇔ A ∈ CEP
n ;

(b) AAw©,† = PA∗ ⇔ A ∈ CEP
n ;

(d) Aw©,†A = PA∗ ⇔ A ∈ CEP
n .

Proof. It follows from (2.1) and (2.9) that

AAw©,† = U
[

It T−1S NN†

0 0

]
U∗, (5.2)

Aw©,†A = U
[

It T−1S + T−2S N
0 0

]
U∗. (5.3)

(a) By (4.2) and (5.2), the result can be directly verified.
(b) By (5.1) and (5.2), we can show that AAw©,† = PA∗ if and only if (In−t − N†N)S ∗4T = 0 and

N†N + (In−t − N†N)S ∗4S (In−t − N†N) = 0, which is further equivalent with S = 0 and N = 0, i.e.,
A ∈ CEP

n .
(c) It follows from (4.2) and (5.3) that Aw©,†A = PA is equivalent with A ∈ CEP

n .
(d) From (5.1) and (5.3), it is similar to the proof of (b). �

Recall from [6] that the core inverse is necessarily EP. The next Theorem shows that this is not the
case with the WC inverse.

Theorem 5.4. Let A ∈ Cn×n
k be given by (2.1) and t ∈ Z+. The following statements are equivalent:
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(a) Aw©,† ∈ CEP
n ;

(c) Aw©,†A = A †©A;
(e) Aw©,†At = AtAw©.

(b) S N = 0;
(d) AtAw©,† = AtA †©;

Proof. (a) ⇔ (b). Since Aw©,† ∈ CEP
n is equivalent with R(Aw©,†) = R((Aw©,†)∗). Using (2.9), we have

that Aw©,† ∈ CEP
n if and only if S N = 0.

(c)⇔ (b). By (2.5) and (5.3), it can be directly verified that Aw©,†A = A †©A if and only if S N = 0.
(d)⇔ (b). By (2.5) and (2.9), it follows that

AtAw©,† = AtA †© ⇐⇒ U
[

T t−1 T t−2S NN†

0 0

]
U∗ = U

[
T t−1 0

0 0

]
U∗

⇐⇒ S N = 0.

(e)⇔ (b). From (2.8) and (2.9), it follows that

Aw©,†At = AtAw© ⇐⇒ U
[

T t−1 T t−2S + T−2TtN
0 0

]
U∗ = U

[
T t−1 T t−2S

0 0

]
U∗

⇐⇒ T−2TtN = 0
⇐⇒ S N = 0.

where Tt =
t−1∑
j=0

T jS N t−1− j. �

In [26], the authors introduced that a matrix A to be a weak group matrix if A ∈ CWG
n , which is

equivalent with S N = 0. Therefore, we have that following remark:

Remark 5.5. It is worth noting that conditions (a), (c)–(e) in Theorem 5.4 are equivalent with A ∈ CWG
n .

The next theorems provide some equivalent conditions for Aw©,† ∈ CP
n and Aw©,† ∈ COP

n .

Theorem 5.6. Let A ∈ Cn×n
k be given by (2.1). The following statements are equivalent:

(a) Aw©,† ∈ CP
n;

(c) AAw©,† = Aw©,†;
(e) Ak(Aw©,†)k = Aw©,†;

(b) T = It;
(d) Aw©,†Ak = Ak;
(f) A(Aw©,†)k = (Aw©,†)k.

Proof. (a)⇔ (b). From (2.9), it is not hard to prove that Aw©,† ∈ CP
n is equivalent with T = It.

(c)⇔ (b). From (2.9) and (5.3), it follows that AAw©,† = Aw©,† if and only if T = It.
(d)⇔ (b). By (2.2) and (2.9), it is easy to verify that Aw©,†Ak = Ak if and only if T = It.
The proofs (e)⇔ (b) and ( f )⇔ (b) are similar to the proof (d)⇔ (b). �

Theorem 5.7. Let A ∈ Cn×n
k be given by (2.1). The following statements are equivalent:

(a) Aw©,† ∈ COP
n ;

(c) AAw©,† = (Aw©,†)∗;
(e) (Aw©,†)kAk = Aw©;

(b) T = It and S N = 0;
(d) Aw©,†A = Aw©;
(f) (Aw©,†)kA = (Aw©)k.
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Proof. (a)⇔ (b). From (2.9) and Theorem 5.6, we can show that Aw©,† ∈ COP
n is equivalent with T = It

and S N = 0.
(c)⇔ (b). By (2.9) and (5.3), it follows from AAw©,† = (Aw©,†)∗ that[

It T−1S NN†

0 0

]
=

[
(T−1)∗ 0

(T−2S NN†)∗ 0

]
.

Hence, we get that AAw©,† = (Aw©,†)∗ is equivalent with T = It and S N = 0.
The proofs of (d)⇔ (b), (e)⇔ (b) and ( f )⇔ (b) are similar to the proof of (c)⇔ (b). �

Corollary 5.8. Let A ∈ Cn×n
k . Then A ∈ COP

n if and only if Aw©,† ∈ CP
n ∩ C

EP
n .

Proof. It is a direct consequence from Theorem 5.4 and Theorem 5.6. �

Working with Theorem 5.6 and Theorem 5.7, we have the following corollary.

Corollary 5.9. Let A ∈ Cn×n
k and for any l ∈ N, l ≥ k. The following statements statements hold:

(a) A ∈ CP
n ⇔ Aw©,† ∈ CP

n and Al = A;
(b) A ∈ COP

n ⇔ Aw©,† ∈ CP
n and Al = A∗.

Proof. (a) The result can be easily derived by lemma 5.1 and Theorem 5.6,
(b) From Lemma 5.1 and Theorem 5.7, we can show that (b) holds. �

6. Different characterizations of weak core matrix

Ferreyra et al. [1] introduced the weak core matrix. The set of all n×n weak core matrices is denoted
by CWC

n , that is:
CWC

n = {A | A ∈ Cn×n, Aw©,† = AD,†}.

In this section, we discuss some equivalent conditions satisfied by a matrix A such that A ∈ CWC
n

using the core-EP decomposition. For convenience, we introduce a necessary lemma.

Lemma 6.1. [1] Let A ∈ Cn×n
k be given by (2.1). Then the following statements are equivalent:

(a) A ∈ CWC
n ;

(b) S N2 = 0;
(c) Aw© = AD.

Theorem 6.2. Let A ∈ Cn×n
k be given by (2.1) and t ∈ Z+. The following statements are equivalent:

(a) A ∈ CWC
n ;

(b) Aw©A = ADA;
(c) AtAw©A = AtADA;
(d) AtAw©,† = AtAD,†;
(e) AkAw©,† = AkA†;
(f) AkAw©A = Ak.
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Proof. (a)⇒ (b). It is a direct consequence from condition (c) of Lemma 6.1.
(b)⇒ (c). Evident.
(c)⇒ (a). By condition, it follows from (2.4) and (2.8) that[

T t T t−1S + T t−2S N
0 0

]
=

[
T t T t−1S + T t−k−1T̃ N
0 0

]
,

which implies T t−k−1(T k−2S N2 + · · ·+ TS Nk−1) = 0. We now obtain that S N2 = 0 since T is invertible.
By Lemma 6.1, we obtain that A ∈ CWC

n .
(a)⇔ (d). It follows form (2.6), (2.9) and Lemma 6.1 that

AtAw©,† = AtAD,† ⇐⇒ U
[

T t−1 T t−2S NN†

0 0

]
U∗ = U

[
T t−1 T t−k−1T̃ NN†

0 0

]
U∗

⇐⇒ T t−2S NN† = T t−k−1T̃ NN†

⇐⇒ S N2 = 0
⇐⇒ A ∈ CWC

n .

(a)⇒ (e). From the definition of the weak core matrix, we have that AkAw©,† = AkAD,† = AkA†.
(e)⇒ ( f ). Evident.
( f )⇒ (a). If AkAw©A = Ak, by (2.2) and (2.8), we can conclude that S N2. Hence item (a) holds. �

Corollary 6.3. Let A ∈ Cn×n
k be given by (2.1). Then A ∈ CWC

n if and only if Ak = Ck, where C = AAw©A.

Proof. Since AkAw©A = Ck, the result is a direct consequence of item ( f ) of Theorem 6.2. �

Theorem 6.4. Let A ∈ Cn×n
k be given by (2.1) and for some t ∈ Z+. The following statements are

equivalent:

(a) A ∈ CWC
n ;

(b) A(Aw©)tA = (Aw©)tA2;
(c) (Aw©)tA = (Aw©)t+1A2;
(d) A(Aw©)tA commutes with (Aw©)tA2;
(e) (Aw©)tA commutes with (Aw©)t+1A2.

Proof. By (2.1) and (2.8), we get that

A(Aw©)tA = U
[

T−t+2 T−t+1S + T−tS N
0 0

]
U∗, (6.1)

(Aw©)tA2 = U
[

T−t+2 T−t+1S + T−tS N + T−t−1S N2

0 0

]
U∗. (6.2)

(a)⇔ (b). By (6.1), (6.2) and Lemma 6.1, we get that A(Aw©)tA = (Aw©)tA2 if and only if A ∈ CWC
n .

(a)⇔ (c). Similar to the part (a)⇔ (b).
(a)⇔ (d). It follows from (6.1), (6.2) and Lemma 6.1 that

A(Aw©)tA(Aw©)tA2 − (Aw©)tA2A(Aw©)tA = U
[

0 T−2t+1S N2

0 0

]
U∗,

which implies that A(Aw©)tA commutes with (Aw©)tA2 if and only if A ∈ CWC
n .

(a)⇔ (e). It is analogous to that of the part (a)⇔ (d). �
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Corollary 6.5. Let A ∈ Cn×n
k and t ∈ Z+. The following statements are equivalent:

(a) A ∈ CWC
n ;

(b) A(A †©)tA2 = (A †©)tA3;
(c) (A †©)tA2 = (A †©)t+1A3;
(d) A(A †©)tA2 commutes with (A †©)tA3;
(e) (A †©)tA2 commutes with (A †©)t+1A3.

Proof. Since Aw© = (A †©)2A and A †©AA †© = A †©, Corollary 6.5 can be directly verified. �

7. Conclusions

In this paper, new characterizations and properties of the WC inverse are derived by using range, null
space, matrix equations, respectively. Several expressions of the WC inverse are also given. Finally,
we show various characterizations of the weak core matrix.

According to the current research background, more characterizations and applications for the WC
inverse are worthy of further discussion which as follows:

1) Characterizing the WC inverse by maximal classes of matrices, full rank decomposition, integral
expressions and so on;

2) New iterative algorithms and splitting methods for computing the WC inverse;
3) Using the WC inverse to solve appropriately constrained systems of linear equations;
4) Investigating the WC inverse of tensors.
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17. D. Mosić, P. S Stanimirović, Representations for the weak group inverse, Appl. Math. Comput.,
397 (2021), 125957. doi: 10.1016/j.amc.2021.125957.
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