Research article

Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator

  • Received: 27 April 2021 Accepted: 11 October 2021 Published: 08 November 2021
  • MSC : 26A51, 26D10, 26D15

  • We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping $ \Upsilon $ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.

    Citation: Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon. Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator[J]. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121

    Related Papers:

  • We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping $ \Upsilon $ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.



    加载中


    [1] D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, In: Mathematics and its Applications (East European Series), Springer Science and Business Media, 1993. doi: 10.1007/978-94-017-1043-5.
    [2] S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2003.
    [3] P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, 2018. doi: 10.1007/978-981-13-3013-1.
    [4] S. I. Butt, M. K. Bakula, D. Pečarić, J. Pečarić, Jensen-Grüss inequality and its applications for the Zipf-Mandelbrot law, Math. Method. Appl. Sci., 44 (2021), 1664–1673. doi: 10.1002/mma.6869.
    [5] S. Khan, M. A. Khan, S. I. Butt, Y. M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Differ. Equ., 2020 (2020), 333. doi: 10.1186/s13662-020-02794-8.
    [6] S. A. Azar, Jensen's inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433–440. doi: 10.1007/s11294-008-9172-9.
    [7] A. Mcd Mercer, A Variant of jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73.
    [8] M. Kian, M. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Al., 26 (2013), 742–753. doi: 10.13001/1081-3810.1684.
    [9] H. R. Moradi, S. Furuichi, Improvement and generalization of some Jensen-Mercer-type inequalities, J. Math. Inequal., 14 (2020), 377–383. doi: 10.7153/jmi-2020-14-24.
    [10] M. A. Khan, Z. Husain, Y. M. Chu, New estimates for csiszar divergence and Zipf-Mandelbrot entropy via Jensen-Mercer's inequality, Complexity, 2020 (2020), 8928691. doi: 10.1155/2020/8928691.
    [11] S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y. M. Chu, New Hermite-Mercer type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 635. doi: 10.1186/s13662-020-03093-y.
    [12] R. Gorenflo, Fractals and fractional calculus in continuum mechanics, In: International centre for mechanical sciences, Springer, Vienna, 1997,277–290. doi: 10.1007/978-3-7091-2664-6.
    [13] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [14] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062.
    [15] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016.
    [16] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9.
    [17] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002.
    [18] D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021 (2021), 117. doi: 10.1186/s13662-021-03270-7.
    [19] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13.
    [20] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9.
    [21] K. M. Saad, M. Alqhtani, Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear, AIMS Mathematics, 6 (2021), 3788–3804. doi: 10.3934/math.2021225.
    [22] H. M. Srivastava, K. M. Saad, Some new and modified fractional analysis of the time-fractional Drinfeld-Sokolov-Wilson system, Chaos, 30 (2020), 113104. doi: 10.1063/5.0009646.
    [23] S. Aljhani, M. S. Md Noorani, K. M. Saad, A. K. Alomari, Numerical solutions of certain new models of the time-fractional Gray-Scott, J. Funct. Space., 2021 (2021), 2544688. doi: 10.1155/2021/2544688.
    [24] A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A.
    [25] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. doi: 10.22436/jnsa.010.03.20.
    [26] E. Set, S. I. Butt, A. O. Akdemir, A. Karaoglan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Soliton. Fract., 143 (2021), 110554. doi: 10.1016/j.chaos.2020.110554.
    [27] S. I. Butt, S. Yousaf, A. O. Akdemir, M. A Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Soliton. Fract., 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025.
    [28] S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New generalizations in the sense of the weighted non-singular fractional integral operator, Fractals, 28 (2020), 2040003. doi: 10.1142/S0218348X20400034.
    [29] S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. doi: 10.1016/S0893-9659(98)00086-X.
    [30] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995.
    [31] D. V. Widder, The Laplace transform, Princeton University Press, 1946.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2177) PDF downloads(127) Cited by(30)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog