Research article Special Issues

Bifurcation control strategy for a fractional-order delayed financial crises contagions model

  • Received: 18 September 2021 Accepted: 27 October 2021 Published: 08 November 2021
  • MSC : 34C23, 34K18, 37GK15, 39A11, 92B20

  • In this paper, we propose a novel fractional-order delayed financial crises contagions model. The stability, Hopf bifurcation and its control of the established fractional-order delayed financial crises contagions model are studied. A delay-independent sufficient condition ensuring the stability and the occurrence of Hopf bifurcation for the fractional-order delayed financial crises contagions model is obtained. By applying time delay feedback controller, a novel delay-independent sufficient criterion guaranteeing the the stability and the occurrence of Hopf bifurcation for the fractional-order controlled financial crises contagions model with delays is set up.

    Citation: Changjin Xu, Chaouki Aouiti, Zixin Liu, Qiwen Qin, Lingyun Yao. Bifurcation control strategy for a fractional-order delayed financial crises contagions model[J]. AIMS Mathematics, 2022, 7(2): 2102-2122. doi: 10.3934/math.2022120

    Related Papers:

  • In this paper, we propose a novel fractional-order delayed financial crises contagions model. The stability, Hopf bifurcation and its control of the established fractional-order delayed financial crises contagions model are studied. A delay-independent sufficient condition ensuring the stability and the occurrence of Hopf bifurcation for the fractional-order delayed financial crises contagions model is obtained. By applying time delay feedback controller, a novel delay-independent sufficient criterion guaranteeing the the stability and the occurrence of Hopf bifurcation for the fractional-order controlled financial crises contagions model with delays is set up.



    加载中


    [1] K. Chen, Y. R. Ying, A nonlinear dynamic model of the financial crises contagions, Intel. Infor. Manag., 3 (2011), 17–21. doi: 10.4236/iim.2011.31002
    [2] H. J. Yu, G. L. Cai, Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dyn., 67 (2012), 2171–2181. doi: 10.1007/s11071-011-0137-9
    [3] L. Cao, A four-dimensional hyperchaotic finance system and its cpntrol problems, J. Control Sci. Eng., 2018 (2018), Article ID 4976380, 12 pages. doi: 10.1155/2018/4976380
    [4] X. F. Liao, C. D. Li, S. B. Zhou, Hopf bifurcation and chaos in macroeconomic models with policy lag, Chaos Soliton. Fract., 15 (2005), 91–108. doi: 10.1016/j.chaos.2004.09.075
    [5] L. Fanti, P. Manfredi, Chaotic business cycles and fiscal policy: An IS-LM model with distributed tax collection lags, Chaos Soliton. Fract., 32 (2007), 736–744. doi: 10.1016/j.chaos.2005.11.024
    [6] R. M. Goodwin, The nonlinear accelerator and the persistence of business cycles, Econometrica, 19 (1951), 1–17. doi: 10.1007/978-1-349-05504-3-6
    [7] A. C. L. Chian, E. L. Rempel, C. Rogers, Complex economic dynamics: Chaotic saddle, crisis and intermittency, Chaos, Soliton. Fract., 29 (2006), 1194–1218. doi: 10.1016/j.chaos.2005.08.218
    [8] Q. Gao, J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn., 58 (2009), 209–216. doi: 10.1007/s11071-009-9472-5
    [9] Z. C. Jiang, Y. F. Guo, T. Q. Zhang, Double delayed feedback control of a nonlinear finance system, Discrete Dyn. Nat. Soc., 2019 (20199), Article ID 7254121, 17 pages. doi: 10.1155/2019/7254121
    [10] W. C. Chen, Dynamics and control of a financial system with time-delayed feedbacks, Chaos Soliton. Fract., 37 (2008), 1198–1207. doi: 10.1016/j.chaos.2006.10.016
    [11] W. K. Son, Y. J. Park, Delayed feedback on the dynamical model of a financial system, Chaos Soliton. Fract., 44 (2011), 208–217. doi: 10.1016/j.chaos.2011.01.010
    [12] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
    [13] C. D. Huang, J. D. Cao, M. Xiao, A. Alsaedi, T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 292 (2017), 210–227. doi: 10.1016/j.amc.2016.07.029
    [14] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational engineering in systems and application multi-conference, IMACS. In: IEEE-SMC Proceedings, Lille, 2; 1996. p.963-968. France; July 1996.
    [15] W. H. Deng, C. P. Li, J. H. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48 (2007), 409–416. doi: 10.1007/s11071-006-9094-0
    [16] P. Yu, G. R. Chen, Hopf bifurcation control using nonlinear feedback with polynomial functions, Int. J. Bifur. Chaos, 14 (2004), 1683–1704. doi: 10.1142/S0218127404010291
    [17] L. G. Yuan, Q. G. Yang, C. B. Zeng, Chaos detection and parameter identification in fractional-order chaotic systems with delay, Nonlinear Dyn., 73 (2013), 439–448. doi: 10.1007/s11071-013-0799-6
    [18] L. G. Yuan, Q. G. Yang, Parameter identification and synchronization of fractional-order chaotic systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 305–316. doi: 10.1016/j.cnsns.2011.04.005
    [19] C. J. Xu, Z. X. Liu, M. X. Liao, P. L. Li, Q. M. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation, Math. Comput. Simul., 182 (2021), 471–494. doi: 10.1016/j.matcom.2020.11.023
    [20] C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Z. X. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cogn. Comput., 13 (2021), 322–356. doi: 10.1007/s12559-020-09782-w
    [21] C. J. Xu, Z. X. Liu, L. Y. Yao, C. Aouiti, Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays, Appl. Math. Comput., 410 (2021), 126458. doi: 10.1016/j.amc.2021.126458
    [22] C. J. Xu, C. Aouiti, Z. X. Liu, A further study on bifurcation for fractional order BAM neural networks with multiple delays, Neurocomputing, 417 (2020), 501–515. doi: 10.1016/j.neucom.2020.08.047
    [23] W. W. Zhang, J. D. Cao, A. Alsaedi, F. E. S. Alsaadi, Synchronization of time delayed fractional order chaotic financial system, Discrete Dyn. Nat. Soc., 2017 (2017), Article ID 1230396, 5 pages. doi: 10.1155/2017/1230396
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2244) PDF downloads(116) Cited by(4)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog