Research article

Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions

  • Received: 01 March 2021 Accepted: 03 June 2021 Published: 23 June 2021
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • In this work, we establish inequalities of Hermite-Hadamard-Mercer (HHM) type for convex functions by using generalized fractional integrals. The results of our paper are the extensions and refinements of Hermite-Hadamard (HH) and Hermite-Hadamard-Mercer (HHM) type inequalities. We discuss special cases of our main results and give new inequalities of HH and HHM type for different fractional integrals like, Riemann-Liouville (RL) fractional integrals, $ k $-Riemann-Liouville ($ k $-RL) fractional integrals, conformable fractional integrals and fractional integrals of exponential kernel.

    Citation: Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak. Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions[J]. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546

    Related Papers:

  • In this work, we establish inequalities of Hermite-Hadamard-Mercer (HHM) type for convex functions by using generalized fractional integrals. The results of our paper are the extensions and refinements of Hermite-Hadamard (HH) and Hermite-Hadamard-Mercer (HHM) type inequalities. We discuss special cases of our main results and give new inequalities of HH and HHM type for different fractional integrals like, Riemann-Liouville (RL) fractional integrals, $ k $-Riemann-Liouville ($ k $-RL) fractional integrals, conformable fractional integrals and fractional integrals of exponential kernel.



    加载中


    [1] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
    [2] M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. doi: 10.1002/mma.7048
    [3] M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. doi: 10.1186/s13662-020-03163-1
    [4] M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. doi: 10.1186/s13662-021-03226-x
    [5] M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 25. doi: 10.1186/s13662-020-03195-7
    [6] M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. doi: 10.1515/math-2021-0015
    [7] M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. doi: 10.1515/math-2021-0020
    [8] M. A. Ali, M. Abbas, M. Sehar, G. Murtaza, Simpson's and Newton's type quantum integral inequalities for preinvex functions, Korean J. Math., 29 (2021), 193–203.
    [9] H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. doi: 10.1007/s10957-020-01726-6
    [10] H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390.
    [11] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.
    [12] A. Guessab, G. Schmeisser, Sharp integral inequalities of Hermite-Hadamard type, J. Apprx. Theory, 115 (2002), 260–288. doi: 10.1006/jath.2001.3658
    [13] A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comput., 73 (2004), 1365–1384.
    [14] A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytope, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958
    [15] A. Guessab, Direct and converse results for generalized multivariate Jensen-type inequalities, J. Nonlinear Convex Anal., 13 (2012), 777–797.
    [16] M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for $s$-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. doi: 10.18514/MMN.2015.1099
    [17] P. O. Mohammed, Some new Hermite-Hadamard type inequalities for $MT$-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258–262. doi: 10.1016/j.jksus.2017.07.011
    [18] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
    [19] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, San Diego, 1974.
    [20] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Taylor Francis, London, 2002 [orig. ed. in Russian; Nauka i Tekhnika, Minsk, 1987].
    [21] M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 193–213.
    [22] M. Z. Sarikaya, A. Karaca, On the $k$-Riemann-Liouville fractional integral and applications, IJSM, 1 (2014), 033–043. doi: 10.26524/jms.2012.4
    [23] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. doi: 10.1186/s13662-017-1285-0
    [24] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
    [25] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048
    [26] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. doi: 10.18514/MMN.2017.1197
    [27] P. O. Mohammed, I. Brevik, A New Version of the Hermite-Hadamard Inequality for Riemann-Liouville Fractional Integrals, Symmetry, 12 (2020), 610. doi:10.3390/sym12040610. doi: 10.3390/sym12040610
    [28] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 2020, 1–18. Available from: https://doi.org/10.1002/mma.6188.
    [29] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69. doi: 10.1186/s13662-020-2541-2
    [30] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., (2019), 1–11. Available from: https://doi.org/10.1002/mma.5784.
    [31] P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for $F$-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359. doi: 10.1186/s13660-018-1950-1
    [32] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the Generalized Hermite-Hadamard Inequalities via the Tempered Fractional Integrals, Symmetry, 12 (2020), 595. Available from: http://doi.org/10.3390/sym12040595.
    [33] F. Qi, P. O. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for $(\alpha, m)$-convex functions, J. Inequal. Appl., 2019 (2019), 135. doi: 10.1186/s13660-019-2079-6
    [34] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. doi: 10.1016/j.cam.2020.112740
    [35] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. doi: 10.1515/math-2020-0038
    [36] D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 59 (2020), 2975–2984. doi: 10.1016/j.aej.2020.03.039
    [37] P. M. Vasić, J. E. Pečarić, On the Jensen inequality, Univ. Beograd. Publ. Elektrotehn Fak. Ser. Mat. Fis., 634–677 (1979), 50–54.
    [38] A. Matković, J. Pečarić, I. Perić, A variant of Jensens inequality of Mercers type for operators with application, Linear Al. Appl., 418 (2006), 551–564. doi: 10.1016/j.laa.2006.02.030
    [39] M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron J. Linear Al., 26 (2013), 50.
    [40] A. McD Mercer, A variant of Jensens inequality, J. Ineq. Pure Appl. Math., 4 (2003), 73.
    [41] A. M. Fink, M. Jodeit Jr, Jensen inequalities for functions with higher monotonicities, Aequations Math., 40 (1990), 26–43. doi: 10.1007/BF02112278
    [42] M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra,, 26 (2013), 50.
    [43] H. Öǧülmüs, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Available from: DOI: 10.13140/RG.2.2.30669.79844.
    [44] G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for $k$-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478.
    [45] M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033–1048.
    [46] B. Ahmad, A Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. doi: 10.1016/j.cam.2018.12.030
    [47] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Let., 11 (1998), 91–95.
    [48] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2493) PDF downloads(112) Cited by(22)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog