Using the spectral projection onto the deflating subspace of a regular matrix pencil corresponding to the eigenvalues inside a specified region of the complex plane, we proposed a new method to compute a corresponding canonical form. The study included a perturbation analysis of the method as well as examples to illustrate its numerical and theoretical merits.
Citation: Miloud Sadkane, Roger Sidje. Computing a canonical form of a matrix pencil[J]. AIMS Mathematics, 2024, 9(5): 10882-10892. doi: 10.3934/math.2024531
Using the spectral projection onto the deflating subspace of a regular matrix pencil corresponding to the eigenvalues inside a specified region of the complex plane, we proposed a new method to compute a corresponding canonical form. The study included a perturbation analysis of the method as well as examples to illustrate its numerical and theoretical merits.
[1] |
Z. Bai, J. Demmel, M. Gu, An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems, Numer. Math., 76 (1997), 279–308. https://doi.org/10.1007/s002110050264 doi: 10.1007/s002110050264
![]() |
[2] |
P. Benner, S. W. R. Werner, Model reduction of descriptor systems with the MORLAB toolbox, IFAC PapersOnLine, 51 (2018), 547–552. https://doi.org/10.1016/j.ifacol.2018.03.092 doi: 10.1016/j.ifacol.2018.03.092
![]() |
[3] |
K. A. Cliffe, T. J. Garratt, A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM J. Matrix Anal. Appl., 15 (1994), 1310–1318. https://doi.org/10.1137/S0895479892233230 doi: 10.1137/S0895479892233230
![]() |
[4] | S. K. Godunov, Modern aspects of linear algebra, translations of mathematical monographs, American Math. Soc., 175 (1998). |
[5] |
S. K. Godunov, Problem of the dichotomy of the spectrum of a matrix, Siberian. Math. J., 27 (1986), 649–660. https://doi.org/10.1007/BF00969193 doi: 10.1007/BF00969193
![]() |
[6] | I. Gohberg, S. Goldberg, M. Kaashoek, Classes of linear operators, In: Operator Theory: Advances and Applications, 1 (1990). |
[7] | G. H. Golub, C. F. Van Loan, Matrix Computations, $4^{th}$ edition, Baltimore: Johns Hopkins University Press, 2013. |
[8] |
G. Hechme, Y. Nechepurenko, M. Sadkane, Efficient methods for computing spectral projectors for linearized hydrodynamic equations, SIAM J. Sci. Comput., 31 (2008), 667–686. https://doi.org/10.1137/050648122 doi: 10.1137/050648122
![]() |
[9] |
B. Kågström, P. Poromaa, Computing eigenspaces with specified eigenvalues of a regular matrix pair $(A, B)$ and condition estimation: theory, algorithms and software, Numer. Algor., 12 (1996), 369–407. https://doi.org/10.1007/BF02142813 doi: 10.1007/BF02142813
![]() |
[10] |
A. N. Malyshev, Parallel algorithm for solving some spectral problems of linear algebra, Linear Algebra Appl., 188/189 (1993), 489–520. https://doi.org/10.1016/0024-3795(93)90477-6 doi: 10.1016/0024-3795(93)90477-6
![]() |
[11] |
R. März, Canonical projections for linear differential algebraic equations, Comput. Math. Appl., 31 (1996), 121–135. https://doi.org/10.1016/0898-1221(95)00224-3 doi: 10.1016/0898-1221(95)00224-3
![]() |
[12] |
M. Sadkane, A. Touhami, Algorithm 918: specdicho: A MATLAB program of spectral dichotomy of regular matrix pencil, ACM Trans. Math. Software, 38 (2012), 1–13. https://doi.org/10.1145/2168773.2168780 doi: 10.1145/2168773.2168780
![]() |
[13] |
M. Sadkane, R. B. Sidje, Efficient computation of the spectral projections of regular matrix pairs, J. Comput. Appl. Math., 298 (2016), 72–81. https://doi.org/10.1016/j.cam.2015.11.035 doi: 10.1016/j.cam.2015.11.035
![]() |
[14] | G. W. Stewart, J. G. Sun, Matrix Perturbation Theory, San Diego: Academic Press, 1990. |
[15] | L. N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton: Princeton 26 University Press, 2005. |