We obtain a new maximum principle of the periodic solutions when the corresponding impulsive equation is linear. If the nonlinear is quasi-monotonicity, we study the existence of the minimal and maximal periodic mild solutions for impulsive partial differential equations by using the perturbation method, the monotone iterative technique and the method of upper and lower solution. We give an example in last part to illustrate the main theorem.
Citation: Huanhuan Zhang, Jia Mu. Periodic problem for non-instantaneous impulsive partial differential equations[J]. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186
We obtain a new maximum principle of the periodic solutions when the corresponding impulsive equation is linear. If the nonlinear is quasi-monotonicity, we study the existence of the minimal and maximal periodic mild solutions for impulsive partial differential equations by using the perturbation method, the monotone iterative technique and the method of upper and lower solution. We give an example in last part to illustrate the main theorem.
[1] | N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equations, 246 (2009), 3834–3863. doi: 10.1016/j.jde.2009.03.004. doi: 10.1016/j.jde.2009.03.004 |
[2] | S. Abbas, M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst., 4 (2010), 406–413. doi: 10.1016/j.nahs.2009.10.004. doi: 10.1016/j.nahs.2009.10.004 |
[3] | S. M. Afonso, E. M. Bonotto, M. Federson, $\check{S}$. Schwabik, Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invariance principle for differential systems with impulses at variable times, J. Differ. Equations, 250 (2011), 2969–3001. doi: 10.1016/j.jde.2011.01.019. doi: 10.1016/j.jde.2011.01.019 |
[4] | N. U. Ahmed, K. L. Teo, S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Anal., 54 (2003), 907–925. doi: 10.1016/S0362-546X(03)00117-2. doi: 10.1016/S0362-546X(03)00117-2 |
[5] | J. Banasiak, L. Arlotti, Perturbations of Positive Semigroups with Applications, London: Springer Verlag, 2006. |
[6] | P. Y. Chen, Y. X. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 74 (2011), 3578–3588. doi: 10.1016/j.na.2011.02.041. doi: 10.1016/j.na.2011.02.041 |
[7] | P. Y. Chen, Y. X. Li, H. Yang, Perturbation method for nonlocal impulsive evolution equations, Nonlinear Anal. Hybrid Syst., 8 (2013), 22–30. doi: 10.1016/j.nahs.2012.08.002. doi: 10.1016/j.nahs.2012.08.002 |
[8] | V. Colao, L. Muglia, H. K. Xu, An existence result for a new class of impulsive functional differential equations with delay, J. Math. Anal. Appl., 441 (2016), 668–683. doi: 10.1016/j.jmaa.2016.04.024. doi: 10.1016/j.jmaa.2016.04.024 |
[9] | K. Deimling, Nonlinear Functional Analysis, New York: Springer Verlag, 1985. |
[10] | Z. Fan, G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709–1727. doi: 10.1016/j.jfa.2009.10.023. doi: 10.1016/j.jfa.2009.10.023 |
[11] | M. Fe$\check{c}$kan, J. R. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93–101. doi: 10.2478/msds-2014-0004. doi: 10.2478/msds-2014-0004 |
[12] | M. Frigon, D. O'Regan, Existence results for first-order impulsive differential equations, J. Math. Anal. Appl., 193 (1995), 96–113. doi: 10.1006/jmaa.1995.1224. doi: 10.1006/jmaa.1995.1224 |
[13] | M. Frigon, D. O'Regan, First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 233 (1999), 730–739. doi: 10.1006/jmaa.1999.6336. doi: 10.1006/jmaa.1999.6336 |
[14] | G. R. Gautam, J. Dabas, Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses, Appl. Math. Comput., 259 (2015), 480–489. doi: 10.1016/j.amc.2015.02.069. doi: 10.1016/j.amc.2015.02.069 |
[15] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, New York: Academic Press, 1988. |
[16] | H. D. Gou, B. L. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204–214. doi: 10.1016/j.cnsns.2016.05.021. doi: 10.1016/j.cnsns.2016.05.021 |
[17] | D. Guo, X. Liu, Extremal solutions of nonlinear impulsive integro differential equations in Banach spaces, J. Math. Anal. Appl., 177 (1993), 538–552. doi: 10.1006/jmaa.1993.1276. doi: 10.1006/jmaa.1993.1276 |
[18] | E. Hernandez, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641–1649. doi: 10.1090/S0002-9939-2012-11613-2. doi: 10.1090/S0002-9939-2012-11613-2 |
[19] | H. M. Eduardo, S. M. Tanaka Aki, Global solutions for abstract impulsive differential equations, Nonlinear Anal., 72 (2010), 1280–1290. doi: 10.1016/j.na.2009.08.020. doi: 10.1016/j.na.2009.08.020 |
[20] | T. Jankowski, Monotone iterative method for first-order differential equations at resonance, Appl. Math. Comput., 233 (2014), 20–28. doi: 10.1016/j.amc.2014.01.123. doi: 10.1016/j.amc.2014.01.123 |
[21] | H. Jian, B. Liu, S. F. Xie, Monotone iterative solutions for nonlinear fractional differential systems with deviating arguments, Appl. Math. Comput., 262 (2015), 1–14. doi: 10.1016/j.amc.2015.03.127. doi: 10.1016/j.amc.2015.03.127 |
[22] | V. Lakshmikanthama, A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828–834, doi: 10.1016/j.aml.2007.09.006. doi: 10.1016/j.aml.2007.09.006 |
[23] | Q. Li, Y. X. Li, Monotone iterative technique for second order delayed periodic problem in Banach spaces, Appl. Math. Comput., 270 (2015), 654–664. doi: 10.1016/j.amc.2015.08.070. doi: 10.1016/j.amc.2015.08.070 |
[24] | Y. X. Li, Maximum principles and the method of upper and lower solutions for time-periodic problems of the telegraph equations, J. Math. Anal. Appl., 327 (2007), 997–1009. doi: 10.1016/j.jmaa.2006.04.066. doi: 10.1016/j.jmaa.2006.04.066 |
[25] | Y. X. Li, A monotone iterative technique for solving the bending elastic beam equations, Appl. Math. Comput., 217 (2010), 2200–2208. doi: 10.1016/j.amc.2010.07.020. doi: 10.1016/j.amc.2010.07.020 |
[26] | Y. X. Li, Z. Liu, Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces, Nonlinear Anal., 66 (2007), 83–92. doi: 10.1016/j.na.2005.11.013. doi: 10.1016/j.na.2005.11.013 |
[27] | J. Liang, J. H. Liu, T. J. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Modelling, 49 (2009), 798–804. doi: 10.1016/j.mcm.2008.05.046. doi: 10.1016/j.mcm.2008.05.046 |
[28] | A. Pazy, Semigroup of linear operators and applications to partial differential equations, Berlin: Springer-Verlag, 1983. |
[29] | M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743–6749. doi: 10.1016/j.amc.2012.12.084. doi: 10.1016/j.amc.2012.12.084 |
[30] | J. R. Wang, X. Z. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 46 (2014), 321–334. doi: 10.1007/s12190-013-0751-4. doi: 10.1007/s12190-013-0751-4 |
[31] | J. R. Wang, Y. Zhou, M. Fe$\breve{c}$kan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. doi: 10.1016/j.camwa.2012.02.021. doi: 10.1016/j.camwa.2012.02.021 |
[32] | J. R. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649–657. doi: 10.1016/j.amc.2014.06.002. doi: 10.1016/j.amc.2014.06.002 |
[33] | X. L. Yu, J. R. Wang, Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 980–989. doi: 10.1016/j.cnsns.2014.10.010. doi: 10.1016/j.cnsns.2014.10.010 |
[34] | V. I. Slyn'ko, C. Tunç, Stability of abstract linear switched impulsive differential equations, Automatica, 107 (2019), 433–441. doi: 10.1016/j.automatica.2019.06.001. doi: 10.1016/j.automatica.2019.06.001 |
[35] | V. I. Slyn'ko, C. Tunç, Instability of set differential equations, J. Math. Anal. Appl., 467 (2018), 935–947. doi: 10.1016/j.jmaa.2018.07.048. doi: 10.1016/j.jmaa.2018.07.048 |