Research article

Periodic problem for non-instantaneous impulsive partial differential equations

  • Received: 05 September 2021 Accepted: 11 November 2021 Published: 30 November 2021
  • MSC : 34A37, 34B77, 47D06, 43K13

  • We obtain a new maximum principle of the periodic solutions when the corresponding impulsive equation is linear. If the nonlinear is quasi-monotonicity, we study the existence of the minimal and maximal periodic mild solutions for impulsive partial differential equations by using the perturbation method, the monotone iterative technique and the method of upper and lower solution. We give an example in last part to illustrate the main theorem.

    Citation: Huanhuan Zhang, Jia Mu. Periodic problem for non-instantaneous impulsive partial differential equations[J]. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186

    Related Papers:

    [1] Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107
    [2] Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641
    [3] R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably . Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data. AIMS Mathematics, 2023, 8(11): 26945-26967. doi: 10.3934/math.20231379
    [4] Sadik Delen, Ismail Naci Cangul . Effect of edge and vertex addition on Albertson and Bell indices. AIMS Mathematics, 2021, 6(1): 925-937. doi: 10.3934/math.2021055
    [5] Sumiya Nasir, Nadeem ul Hassan Awan, Fozia Bashir Farooq, Saima Parveen . Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling. AIMS Mathematics, 2022, 7(7): 11829-11850. doi: 10.3934/math.2022660
    [6] Wei Gao, Zahid Iqbal, Shehnaz Akhter, Muhammad Ishaq, Adnan Aslam . On irregularity descriptors of derived graphs. AIMS Mathematics, 2020, 5(5): 4085-4107. doi: 10.3934/math.2020262
    [7] Chenxu Yang, Meng Ji, Kinkar Chandra Das, Yaping Mao . Extreme graphs on the Sombor indices. AIMS Mathematics, 2022, 7(10): 19126-19146. doi: 10.3934/math.20221050
    [8] Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz . On the Gutman-Milovanović index and chemical applications. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094
    [9] Fawaz E. Alsaadi, Faisal Ali, Imran Khalid, Masood Ur Rehman, Muhammad Salman, Madini Obad Alassafi, Jinde Cao . Quantifying some distance topological properties of the non-zero component graph. AIMS Mathematics, 2021, 6(4): 3512-3524. doi: 10.3934/math.2021209
    [10] Zhenhua Su, Zikai Tang . Extremal unicyclic and bicyclic graphs of the Euler Sombor index. AIMS Mathematics, 2025, 10(3): 6338-6354. doi: 10.3934/math.2025289
  • We obtain a new maximum principle of the periodic solutions when the corresponding impulsive equation is linear. If the nonlinear is quasi-monotonicity, we study the existence of the minimal and maximal periodic mild solutions for impulsive partial differential equations by using the perturbation method, the monotone iterative technique and the method of upper and lower solution. We give an example in last part to illustrate the main theorem.



    Since molecules and molecular compounds are used to generate molecular graphs. Any graph that simulates some molecular structure can use a topological index as a mathematical formula [1]. Topological indices play a significant role in chemistry, pharmacology, etc., [2]. A molecular graph, whose vertices and edges are represented by atoms and chemical bonds, respectively, illustrates the constructional outcome of a chemical compound in graph theory form. Cheminformatics, a field shared by information science, chemistry and mathematics, has recently gained notoriety. This new topic discusses the connection between QSAR and QSPR, which is used to investigate (with a given level of accuracy) the theoretical and biological activities of specific chemical compounds [3]. For quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), in which the physicochemical characteristics of molecules are correlated with their chemical structure, a topological index (TI) is a real number associated with chemical structures via their hydrogen-depleted graph [4,5,6].

    Chemical graph theory is a newly developed area of mathematical chemistry that combines graph theory with chemistry. The main objective of chemical graph theory is to acknowledge the structural effects of a molecular graph [7]. The molecules and molecular compounds aid in the construction of a molecular graph. Topological descriptors, which are typically graph invariants, are numerical characteristics of a graph that describe its topology [8]. The certain physiochemical characteristics of some chemical compounds, such as their boiling point, strain energy, and stability are correlated by degree-based topological indices [9].

    Chemical graph theory has many applications in many areas of life, including computer science, materials science, drug design, chemistry, biological networks, and electrical networks. For this reason, academics are currently very interested in this theory [10,11]. The numerical values attached to a simple, finite graph that represent its structure are called topological indices [12]. The multiplicative Zagreb indices for mathematical features, connection indices and applications see in [13,14,15,16,17,18,19,20]. In this study, a novel method for computing the topological indices of two different chemical networks is presented. The mathematical properties of molecular structure descriptors, particularly those that depend on graph degrees, have been examined in our research. We derive neighborhood multiplicative topological indices and concise mathematical analysis for product of graphs (L) and tetrahedral diamond lattices (Ω). The fifth multiplicative Zagreb index, the general fifth-multiplicative Zagreb index, the fifth-multiplicative hyper-Zagreb index, the fifth-multiplicative product connectivity index, the fifth-multiplicative sum connectivity index, the fifth-multiplicative geometric-arithmetic index, the fifth-multiplicative harmonic index, and the fifth-multiplicative redefined Zagreb index are the topological indices that are taken into consideration. In this paper, we consider G=(V,E) to be a simple, connected and finite graph contains vertices (atoms) atoms and edges (chemical bonds linking these atoms), for notation referee to [21].

    In 2017, the new neighborhood degree-based multiplicative topological indices were introduced by V. R. Kulli in [22]. Let §1  and §2  denote the fifth neighborhood multiplicative M-Zagreb index defined as:

    §1(G)=U1U2E(G)(L(U1)+L(U2))and§2(G)=U1U2E(G)L(U1)L(U2). (2.1)

    Let §3 and §5  denote the general fifth multiplicative Zagreb index that are defined as:

    §3(G)=U1U2E(G)[L(U1)+L(U2)]αand§5(G)=U1U2E(G)[L(U1)L(U2)]α, (2.2)

    where α is a real number.

    The fifth multiplicative hyper-Zagreb index is denoted by §4  and §6 defined as:

    §4(G)=U1U2E(G)[L(U1)+L(U2)]2and§6(G)=U1U2E(G)[L(U1)L(U2)]2. (2.3)

    The fifth multiplicative product connectivity index §8  is defined as:

    §8(G)=U1U2E(G)1L(U1)L(U2). (2.4)

    The fifth multiplicative sum-connectivity index of a graph G is defined as:

    §9(G)=U1U2E(G)1L(U1)+L(U2) (2.5)

    The fifth multiplicative geometric-arithmetic index §10  of a graph G and it is defined as:

    §10(G)=U1U2E(G)2L(U1)L(U2)L(U1)+L(U2). (2.6)

    Inspired by Kulli, Sarkar et al. [23] introduced the fifth multiplicative product connectivity index of first kind §7, the fifth multiplicative harmonic index §11 and the fifth multiplicative redefined Zagreb index §12, respectively defined as:

    §7(G)=U1U2E(G)L(U1)L(U2), (2.7)
    §11(G)=U1U2E(G)2L(U1)+L(U2), (2.8)
    §12(G)=U1U2E(G)L(U1)L(U2)[(L(U1)+L(U2]. (2.9)

    For any two graphs L and M, the tensor product of the graphs L and M is interpreted as LM. This product is also known as categorical product of graphs defined in [24,25]. The vertex set of LM is denoted by V (L)×V (M). For any integers p and q, the tensor product Lp and Lq is described by LpLq. This graph contains a.b number of vertices with vertex set

    {(t1,t2):1t1q, 1t2p},

    and edge between (t1, t2) and (t3, t4)exists if and only if:

    |t1t3||t2t4|=1.

    The graph LpLq is known as a L with vertex cardinality pq. The metric dimension of the categorial product of graphs is determined in [26] and edge irregular reflexive labeling of categorical product of two paths is determined in [27]. This shows the importance of this product in different areas. Ahmad [28] determined the upper bounds of irregularity measures of categorical product of two connected graphs. The edge partition of graph LpLq based on the degree of end vertices is given in Table 1. This edge partition is also given in [29]. For more understanding we depicted L9L10 in Figure 1.

    Table 1.  The edge partitions of LpLq.
    L(U1), L(U2) Frequency
    (1, 4) 4
    (2, 2) 4
    (2, 4) 4(p+q-6)
    (4, 4) 2(p-3)(q-3)

     | Show Table
    DownLoad: CSV
    Figure 1.  The graph of L9L10.

    Theorem 3.1. Let G be a tensor product of two paths. Then the fifth neighborhood multiplicative M-Zagreb indices for G are:

    §1(G)=122880(p2q+pq23p23q212pq+27p+27q54),
    §2(G)=262144(p2q+pq23p23q212pq+27p+27q54).

    Proof. From the definitions of §1(G), §2(G)  and Table 1, we have

    §1(G)=|P(1,4)|(1+4)×|P(2,2)|(2+2)×|P(2,4)|(2+4)×|P(4,4)|(4+4)=4(5)×4(4)×4(p+q6)(6)×2(p3)(q3)(8)=20×16×24(p+q6)×16(p3)(q3)=122880(p2q+pq23p23q212pq+27p+27q54).

    Similarly,

    §2(G)=|P(1,4)|(4)×|P(2,2)|(4)×|P(2,4)|(8)×|P(4,4)|(16)=4(4)×4(4)×4(p+q6)(8)×2(p3)(q3)(16)=262144(p+q6)(pq3p3q+9)=262144(p2q+pq23p23q212pq+27p+27q54).

    The graphical representation of the Theorem 3.1 is given in Figure 2(a), (b).

    Figure 2.  The graphical representations of Theorems 3.1–3.4 with p and q.

    Theorem 3.2. Let G be a tensor product of two paths. Then the general fifth multiplicative Zagreb indices of G are:

    §3(G)=128(960)α(p2q+pq23p23q212pq+27p+27q54),
    §5(G)=128(2048)α(p2q+pq23p23q212pq+27p+27q54).

    Proof. From the definitions of §3(G) and Table 1, we get

    §3(G)=|P(1,4)|(1+4)α×|P(2,2)|(2+2)α×|P(2,4)|(2+4)α×|P(4,4)|(4+4)α=4(5)α×4(4)α×4(p+q6)(6)α×2(p3)(q3)(8)α=128(960)α(p2q+pq23p23q212pq+27p+27q54).

    From the definitions of §5(G) and Table 1, we obtain

    §5(G)=|P(1,4)|(1 × 4)α×|P(2,2)|(2×2)α×|P(2,4)|(2×4)α×|P(4,4)|(4×4)α=4(4)α×4(4)α×4(p+q6)(8)α×2(p3)(q3)(16)α=128(2048)α(p2q+pq23p23q212pq+27p+27q54).

    Theorem 3.3. Let G be a tensor product of two paths. Then the fifth multiplicative hyper-Zagreb indices for G are:

    §4(G)=117964800(p2q+pq23p23q212pq+27p+27q54),
    §6(G)=536870912(p2q+pq23p23q212pq+27p+27q54).

    Proof. From the definitions of §4(G), §6(G) and Table 1, we obtain

    §4(G)=|P(1,4)|(1+4)2×|P(2,2)|(2+2)2×|P(2,4)|(2+4)2×|P(4,4)|(4+4)2=4(5)2×4(4)2×4(p+q6)(6)2×2(p3)(q3)(8)2=117964800(p2q+pq23p23q212pq+27p+27q54),
    §6(G)=|P(1,4)|(1 × 4)2×|P(2,2)|(22)2×|P(2,4)|(24)2×|P(4,4)|(44)2=4(4)2×4(4)2×4(p+q6)(8)2×2(p3)(q3)(16)2=536870912(p2q+pq23p23q212pq+27p+27q54).

    The graphical representations of Theorems 3.2 and 3.3 are shown in Figure 2(c)(f) with p and q, respectively.

    Theorem 3.4. The fifth multiplicative product connectivity index §8 for tensor product of two path G is:

    §8(G)=140962(p2q+pq23p23q212pq+27p+27q54).

    Proof. From the formulation of §8(G) and Table 1, it is easy to calculate that

    §8(G)=1|P(1,4)|(4)×1|P(2,2)|(4)×1|P(2,4)|(8)×1|P(4,4)|(16)=14(4)×14(4)×14(p+q6)(8)×12(p3)(q3)(16)=140962(p2q+pq23p23q212pq+27p+27q54).

    The graphical representation of fifth multiplicative product connectivity index §8 is shown in Figure 2(g) with p and q.

    Theorem 3.5. Let G be a tensor product of two paths. Then the fifth multiplicative sum-connectivity index of a graph G is:

    §9(G)=1102415(p2q+pq23p23q212pq+27p+27q54).

    Proof. From the formulation of §9(G) and Table 1, we get

    §9=1|P(1,4)|(5)×1|P(2,2)|(4)×1|P(2,4)|6×1|P(4,4)|8=14(5)×14(4)×14(p+q6)6×12(p3)(q3)8=1102415×(p2q+pq23p23q212pq+27p+27q54).

    Theorem 3.6. Let G be a tensor product of two paths. Then the fifth multiplicative geometric-arithmetic index §10 of a graph G is:

    §10(G)=64215.

    Proof. By the definition of §10(G) and using the values of Table 1, we have

    §10=2|P(1,4)|(4)|P(1,4)|(5)×2|P(2,2)|(4)|P(2,2)|(4)×2|P(2,4)|(8)|P(2,4)|6×2|P(4,4)|(16)|P(4,4)|(8)=24445×24444×24(p+q6)84(p+q6)6×22(p3)(q3)162(p3)(q3)8=64215.

    The graphical representations of fifth multiplicative sum-connectivity index §9 and fifth multiplicative geometric-arithmetic index §10 is shown in Figure 3(a), (b), respectively.

    Figure 3.  The graphical representations of Theorems 3.5–3.7 with p and q.

    Theorem 3.7. Let G be a tensor product of two paths. Then the fifth multiplicative product connectivity index of first kind is

    §7(G)=10242(p2q3p2+pq212pq+27p3q2+27q54),

    the fifth multiplicative harmonic index is

    §11(G)=16415(p2q3p2+pq212pq+27p3q2+27q54),

    the fifth multiplicative redefined Zagreb index is

    §12(G)=251658240(p+q6)(p3)(q3).

    Proof. By using Table 1, in the formulation of §7(G) §11(G) and §12(G) we get

    §7=|P(1,4)|(1×4)×|P(2,2)|(2×2)×|P(2,4)|(2×4)×|P(4,4)|(4×4)=44×44×4(p+q6)8×2(p3)(q3)16=10242(p2q3p2+pq212pq+27p3q2+27q54),
    §11(G)=2|P(1,4)|(5)×2|P(2,2)|(4)×2|P(2,4)|6×2|P(4,4)|(8)=12(5)×12(4)×12(p+q6)6×1(p3)(q3)8=16415(p2q3p2+pq212pq+27p3q2+27q54),
    §12(G)=|P(1,4)|(1× 4)(1+4)×|P(2,2)|(2×2)(2+2)×|P(2,4)|(2×4)(2+4)×|P(4,4)|(4×4)(4+4)=251658240(p+q6)(p3)(q3).

    The graphical representations of fifth multiplicative product connectivity index of first kind, the fifth multiplicative harmonic index and the fifth multiplicative redefined Zagreb index are shown in Figure 3(c)(e), respectively.

    A tetrahedral diamond lattice Ω is made up of t layers, each of which extends to lt. The initial layer only has one vertex, while the subsequent layer is isomorphic to S4 because it contains four vertices. Each layer l for t 3 has l2k=1k hexagons with 3 pendent vertices. We may set up each additional layer's vertices in accordance with the depth initial marking. To be more specific, we may use layer l to represent labels from l2k=1k2+1 to l2k=1k2. The vertex set of a Ω of size t contains vertices that are a and b while the edge set has edges that are 23(t2t). Ω have no odd cycles, making them bipartite graphs. The graph of tetrahedral diamond lattice Ω is shown in Figure 4 and the edge partition based on the degree of end vertices is given in Table 2.

    Figure 4.  The 5-dimension Ω.
    Table 2.  The edge partition of tetrahedral diamond lattice Ω.
    L(U1), L(U2) Frequency
    (1, 4) 4
    (2, 4) 12(t-2)
    (3, 4) 6(t-2)(t-3)
    (4, 4) 2/3(t39t2+26t24)

     | Show Table
    DownLoad: CSV

    Theorem 4.1. Let Ω tetrahedral diamond lattice then the fifth neighborhood multiplicative M-Zagreb indices for Ω are:

    §1(Ω)=40320(t37t2+16t12)(t39t2+26t24),
    §2(Ω)=1179648(t37t2+16t12)(t39t2+26t24).

    Proof. Using the values of Table 2 in Eq (2.1), we get

    §1(Ω)=|P(1,4)|(1+4)×|P(2,4)|(2+4)×|P(3,4)|(3+4)×|P(4,4)|(4+4)=4(5)×12(t2)(6)×6(t2)(t3)(7)×23(t39t2+26t24)(8)=40320(t37t2+16t12)(t39t2+26t24),
    §2(Ω)=|P(1,4)|(1×4)×|P(2,4)|(2×4)×|P(3,4)|(3×4)×|P(4,4)|(4×4)=4(4)×12(t2)(8)×6(t2)(t3)(12)×23(t39t2+26t24)(16)=1179648(t37t2+16t12)(t39t2+26t24).

    The graphical representations of §1(Ω) and §2(Ω)  with t is shown in Figure 5.

    Figure 5.  The graphical representations of §1(Ω)§6(Ω) and §8(Ω) with t.

    Theorem 4.2. Let Ω tetrahedral diamond lattice then the general fifth multiplicative Zagreb indices of Ω are:

    §3(Ω)=192(1680)α(t37t2+16t12)(t39t2+26t24),
    §5(Ω)=192(6144)α(t37t2+16t12)(t37t2+26t24).

    Proof. Using the values of Table 2 in Eq (2.2), we get

    §3(G)=[|P(1,4)|(1+4)α×|P(2,4)|(2+4)α×|P(3,4)|(3+4)α×|P(4,4)|(4+4)α]=4(5)α×12(t2)(6)α×6(t2)(t3)(7)α×23(t39t2+26t24)(8)α=192(1680)α(t37t2+16t12)(t39t2+26t24),
    §5(Ω)=[|P(1,4)|(1×4)α×|P(2,4)|(2×4)α×|P(3,4)|(3×4)α×|P(4,4)|(4×4)a]=[4(4)α×12(t2)(8)α×6(t2)(t3)(12)α×23(t39t2+26t24)(16)a=192(6144)a(t37t2+16t12)(t37t2+26t24).

    Theorem 4.3. Let Ω tetrahedral diamond lattice then the fifth multiplicative hyper-Zagreb indices Ω are:

    §4(Ω)=541900800(t37t2+16t12)(t39t2+26t24),
    §6(Ω)=7247757312(t37t2+16t12)(t37t2+26t24).

    Proof. Using the values of Table 2 in Eq (2.3), we get

    §4(Ω)=|P(1,4)|(1+4)2×|P(2,4)|(2+4)2×|P(3,4)|(3+4)2×|P(4,4)|(4+4)2=4(5)2×12(t2)(6)2×6(t2)(t3)(7)2×23(t39t2+26t24)(8)2=4×12×6×23×(5×6×7×8)2(t2)2(t3)(t39t2+26t24)=192(1680)2(t2+44t)(t3)(t39t2+26t24)=541900800(t37t2+16t12)(t39t2+26t24),
    §6(Ω)=|P(1,4)|(1×4)2×|P(2,4)|(2×4)2×|P(3,4)|(3×4)2×|P(4,4)|(4×4)2=4(4)2×12(t2)(8)2×6(t2)(t3)(12)2×23(t39t2+26t24)(16)2=4×12×6×23×(4×8×12×16)2(t37t2+16t12)(t37t2+26t24)=7247757312(t37t2+16t12)(t37t2+26t24).

    The graphical representations of §3(Ω)§6(Ω), with t is shown in Figure 5.

    Theorem 4.4. Let Ω tetrahedral diamond lattice then the fifth multiplicative product connectivity index Ω are:

    §8(Ω)=161446(t37t2+16t12)(t39t2+26t24).

    Proof. Using the values of Table 2 in Eq (2.4), we get

    §8=1|P(1,4)|(1×4)×1|P(2,4)|(2×4)×1|P(3,4)|(3×4)×1|P(4,4)|(4×4)=14(4)×112(t2)(8)×16(t2)(t3)(12)×123(t39t2+26t24)16=161446(t37t2+16t12)(t39t2+26t24).

    The graphical representation of the fifth multiplicative product connectivity index §8(Ω) with t is shown in Figure 5.

    Theorem 4.5. Let Ω tetrahedral diamond lattice then the fifth multiplicative sum-connectivity index Ω is:

    §9(Ω)=1768210(t37t2+16t12)(t39t2+26t24).

    Proof. Using the values of Table 2 in Eq (2.5), we get

    §9(Ω)=1|P(1,4)|(1+4)×1|P(2,4)|(2+4)×1|P(3,4)|(3+4)×1|P(4,4)|(4+4)=14(5)×112(t2)(6)×16(t2)(t3)(7)×123(t39t2+26t24)(8)=1768210(t37t2+16t12)(t39t2+26t24).

    Theorem 4.6. Let Ω tetrahedral diamond lattice then the fifth multiplicative geometric-arithmetic index Ω is

    §10(Ω)=128235.

    Proof. Using the values of Table 2 in Eq (2.6), we get

    §10=2|P(1,4)|(1×4)|P(1,4)|(1+4)×2|P(2,4)|(2×4)|P(2,4)|(2+4)×2|P(3,4)|(3×4)|P(3,4)|(3+4)×2|P(4,4)|(4×4)|P(4,4)|(4+4)=2×4445×2×12(t2)812(t2)6×2×6(t2)(t3)126(t2)(t3)7×2×23(t39t2+26t24)1623(t39t2+26t24)8=128235.

    Theorem 4.7. Let Ω tetrahedral diamond lattice. Then the fifth multiplicative product connectivity index of first kind is

    §7(Ω)=61446(t37t2+16t12)(t39t2+26t24),

    the fifth multiplicative harmonic index is

    §11(Ω)=148105(t37t2+16t12)(t39t2+26t24),

    the fifth multiplicative redefined Zagreb index is

    §12(Ω)=1981808640(t37t2+16t12)(t37t2+26t24).

    Proof. Using the values of Table 2 in Eq (2.7), we get

    §7(Ω)=|P(1,4)|(1×4)×|P(2,4)|(2×4)×|P(3,4)|(3×4)×|P(4,4)|(4×4)=4(4)×12(t2)(8)×6(t2)(t3)(12)×23(t39t2+26t24)16=61446(t37t2+16t12)(t39t2+26t24),
    §11(Ω)=2|P(1,4)|(1+4)×2|P(2,4)|(2+4)×2|P(3,4)|(3+4)×2|P(4,4)|(4+4)=24(5)×212(t2)(6)×26(t2)(t3)(7)×223(t39t2+26t24)(8)=148105(t37t2+16t12)(t39t2+26t24),
    §12(Ω)=|P(1,4)|(1×4)(1+4)×|P(2,4)|(2×4)(2+4)×|P(3,4)|(3×4)(3+4)×|P(4,4)|(4×4)(4+4)=4(4)5×12(t2)(8)6×6(t2)(t3)(12)(7)×23(t39t2+26t24)16(8)=1981808640(t37t2+16t12)(t37t2+26t24).

    The graphical representations of the fifth multiplicative product connectivity index of first kind §7(Ω), the fifth multiplicative sum-connectivity index §9(Ω), the fifth multiplicative geometric-arithmetic index §10(Ω), fifth multiplicative harmonic index §11(Ω) and fifth multiplicative redefined Zagreb index §12(Ω) are shown in Figure 6.

    Figure 6.  The graphical representations of §7(Ω) and §9(Ω)§12(Ω) with t.

    This study contains a novel method for computing the topological indices of different chemical networks and namely the networks are product of graphs (L) and tetrahedral diamond lattices (Ω). The mathematical topological properties of molecular structure descriptors, specifically those that depend on graph degrees, are examined in this research work. We derived neighborhood multiplicative topological indices and concise mathematical analysis for product of graphs (L) and tetrahedral diamond lattices (Ω). A few topological descriptors are studied namely, the fifth multiplicative Zagreb index, the general fifth-multiplicative Zagreb index, the fifth-multiplicative hyper-Zagreb index, the fifth-multiplicative product connectivity index, the fifth-multiplicative sum connectivity index, the fifth-multiplicative geometric-arithmetic index, the fifth-multiplicative harmonic index, and the fifth-multiplicative redefined Zagreb index are the topological indices that are taken into consideration. Moreover, a comparative study is also included in this work.

    The author is grateful to the Deanship of Scientific Research of Jazan University for supporting financially this work under Waed grant No. (W44-91).

    I declare that there is no conflict of interest of this article.



    [1] N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equations, 246 (2009), 3834–3863. doi: 10.1016/j.jde.2009.03.004. doi: 10.1016/j.jde.2009.03.004
    [2] S. Abbas, M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst., 4 (2010), 406–413. doi: 10.1016/j.nahs.2009.10.004. doi: 10.1016/j.nahs.2009.10.004
    [3] S. M. Afonso, E. M. Bonotto, M. Federson, ˇS. Schwabik, Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invariance principle for differential systems with impulses at variable times, J. Differ. Equations, 250 (2011), 2969–3001. doi: 10.1016/j.jde.2011.01.019. doi: 10.1016/j.jde.2011.01.019
    [4] N. U. Ahmed, K. L. Teo, S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Anal., 54 (2003), 907–925. doi: 10.1016/S0362-546X(03)00117-2. doi: 10.1016/S0362-546X(03)00117-2
    [5] J. Banasiak, L. Arlotti, Perturbations of Positive Semigroups with Applications, London: Springer Verlag, 2006.
    [6] P. Y. Chen, Y. X. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 74 (2011), 3578–3588. doi: 10.1016/j.na.2011.02.041. doi: 10.1016/j.na.2011.02.041
    [7] P. Y. Chen, Y. X. Li, H. Yang, Perturbation method for nonlocal impulsive evolution equations, Nonlinear Anal. Hybrid Syst., 8 (2013), 22–30. doi: 10.1016/j.nahs.2012.08.002. doi: 10.1016/j.nahs.2012.08.002
    [8] V. Colao, L. Muglia, H. K. Xu, An existence result for a new class of impulsive functional differential equations with delay, J. Math. Anal. Appl., 441 (2016), 668–683. doi: 10.1016/j.jmaa.2016.04.024. doi: 10.1016/j.jmaa.2016.04.024
    [9] K. Deimling, Nonlinear Functional Analysis, New York: Springer Verlag, 1985.
    [10] Z. Fan, G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709–1727. doi: 10.1016/j.jfa.2009.10.023. doi: 10.1016/j.jfa.2009.10.023
    [11] M. Feˇckan, J. R. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93–101. doi: 10.2478/msds-2014-0004. doi: 10.2478/msds-2014-0004
    [12] M. Frigon, D. O'Regan, Existence results for first-order impulsive differential equations, J. Math. Anal. Appl., 193 (1995), 96–113. doi: 10.1006/jmaa.1995.1224. doi: 10.1006/jmaa.1995.1224
    [13] M. Frigon, D. O'Regan, First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 233 (1999), 730–739. doi: 10.1006/jmaa.1999.6336. doi: 10.1006/jmaa.1999.6336
    [14] G. R. Gautam, J. Dabas, Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses, Appl. Math. Comput., 259 (2015), 480–489. doi: 10.1016/j.amc.2015.02.069. doi: 10.1016/j.amc.2015.02.069
    [15] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, New York: Academic Press, 1988.
    [16] H. D. Gou, B. L. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204–214. doi: 10.1016/j.cnsns.2016.05.021. doi: 10.1016/j.cnsns.2016.05.021
    [17] D. Guo, X. Liu, Extremal solutions of nonlinear impulsive integro differential equations in Banach spaces, J. Math. Anal. Appl., 177 (1993), 538–552. doi: 10.1006/jmaa.1993.1276. doi: 10.1006/jmaa.1993.1276
    [18] E. Hernandez, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641–1649. doi: 10.1090/S0002-9939-2012-11613-2. doi: 10.1090/S0002-9939-2012-11613-2
    [19] H. M. Eduardo, S. M. Tanaka Aki, Global solutions for abstract impulsive differential equations, Nonlinear Anal., 72 (2010), 1280–1290. doi: 10.1016/j.na.2009.08.020. doi: 10.1016/j.na.2009.08.020
    [20] T. Jankowski, Monotone iterative method for first-order differential equations at resonance, Appl. Math. Comput., 233 (2014), 20–28. doi: 10.1016/j.amc.2014.01.123. doi: 10.1016/j.amc.2014.01.123
    [21] H. Jian, B. Liu, S. F. Xie, Monotone iterative solutions for nonlinear fractional differential systems with deviating arguments, Appl. Math. Comput., 262 (2015), 1–14. doi: 10.1016/j.amc.2015.03.127. doi: 10.1016/j.amc.2015.03.127
    [22] V. Lakshmikanthama, A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828–834, doi: 10.1016/j.aml.2007.09.006. doi: 10.1016/j.aml.2007.09.006
    [23] Q. Li, Y. X. Li, Monotone iterative technique for second order delayed periodic problem in Banach spaces, Appl. Math. Comput., 270 (2015), 654–664. doi: 10.1016/j.amc.2015.08.070. doi: 10.1016/j.amc.2015.08.070
    [24] Y. X. Li, Maximum principles and the method of upper and lower solutions for time-periodic problems of the telegraph equations, J. Math. Anal. Appl., 327 (2007), 997–1009. doi: 10.1016/j.jmaa.2006.04.066. doi: 10.1016/j.jmaa.2006.04.066
    [25] Y. X. Li, A monotone iterative technique for solving the bending elastic beam equations, Appl. Math. Comput., 217 (2010), 2200–2208. doi: 10.1016/j.amc.2010.07.020. doi: 10.1016/j.amc.2010.07.020
    [26] Y. X. Li, Z. Liu, Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces, Nonlinear Anal., 66 (2007), 83–92. doi: 10.1016/j.na.2005.11.013. doi: 10.1016/j.na.2005.11.013
    [27] J. Liang, J. H. Liu, T. J. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Modelling, 49 (2009), 798–804. doi: 10.1016/j.mcm.2008.05.046. doi: 10.1016/j.mcm.2008.05.046
    [28] A. Pazy, Semigroup of linear operators and applications to partial differential equations, Berlin: Springer-Verlag, 1983.
    [29] M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743–6749. doi: 10.1016/j.amc.2012.12.084. doi: 10.1016/j.amc.2012.12.084
    [30] J. R. Wang, X. Z. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 46 (2014), 321–334. doi: 10.1007/s12190-013-0751-4. doi: 10.1007/s12190-013-0751-4
    [31] J. R. Wang, Y. Zhou, M. Fe˘ckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. doi: 10.1016/j.camwa.2012.02.021. doi: 10.1016/j.camwa.2012.02.021
    [32] J. R. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649–657. doi: 10.1016/j.amc.2014.06.002. doi: 10.1016/j.amc.2014.06.002
    [33] X. L. Yu, J. R. Wang, Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 980–989. doi: 10.1016/j.cnsns.2014.10.010. doi: 10.1016/j.cnsns.2014.10.010
    [34] V. I. Slyn'ko, C. Tunç, Stability of abstract linear switched impulsive differential equations, Automatica, 107 (2019), 433–441. doi: 10.1016/j.automatica.2019.06.001. doi: 10.1016/j.automatica.2019.06.001
    [35] V. I. Slyn'ko, C. Tunç, Instability of set differential equations, J. Math. Anal. Appl., 467 (2018), 935–947. doi: 10.1016/j.jmaa.2018.07.048. doi: 10.1016/j.jmaa.2018.07.048
  • This article has been cited by:

    1. Ali Ahmad, Ali N. A. Koam, Ibtisam Masmali, Muhammad Azeem, Haleemah Ghazwani, Connection number topological aspect for backbone DNA networks, 2023, 46, 1292-8941, 10.1140/epje/s10189-023-00381-9
    2. Ibtisam Masmali, Muhammad Azeem, Muhammad Kamran Jamil, Ali Ahmad, Ali N. A. Koam, Study of some graph theoretical parameters for the structures of anticancer drugs, 2024, 14, 2045-2322, 10.1038/s41598-024-64086-5
    3. Hani Shaker, Sabeen Javaid, Usman Babar, Muhammad Kamran Siddiqui, Asim Naseem, Characterizing superlattice topologies via fifth M-Zagreb polynomials and structural indices, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04645-3
    4. Ali N. A. Koam, Ali Ahmad, Ibtisam Masmali, Muhammad Azeem, Mehwish Sarfraz, Naeem Jan, Several intuitionistic fuzzy hamy mean operators with complex interval values and their application in assessing the quality of tourism services, 2024, 19, 1932-6203, e0305319, 10.1371/journal.pone.0305319
    5. Ali N. A. Koam, Ali Ahmad, Maryam Salem Alatawi, Adnan Khalil, Muhammad Azeem, Ammar Alsinai, On the Constant Partition Dimension of Some Generalized Families of Toeplitz Graph, 2024, 2024, 2314-4629, 10.1155/2024/4721104
    6. Ali N. A. Koam, Ali Ahmad, Raed Qahiti, Muhammad Azeem, Waleed Hamali, Shonak Bansal, Enhanced Chemical Insights into Fullerene Structures via Modified Polynomials, 2024, 2024, 1076-2787, 10.1155/2024/9220686
    7. Ali Ahmad, Ali N. A. Koam, Muhammad Azeem, Ibtisam Masmali, Rehab Alharbi, Eyas Mahmoud, Edge based metric dimension of various coffee compounds, 2024, 19, 1932-6203, e0294932, 10.1371/journal.pone.0294932
    8. Muhammad Shoaib Sardar, Khalil Hadi Hakami, Vinod Kumar Tiwari, QSPR Analysis of Some Alzheimer’s Compounds via Topological Indices and Regression Models, 2024, 2024, 2090-9063, 10.1155/2024/5520607
    9. Ali N. A. Koam, Ali Ahmad, Shahid Zaman, Ibtisam Masmali, Haleemah Ghazwani, Fundamental aspects of the molecular topology of fuchsine acid dye with connection numbers, 2024, 47, 1292-8941, 10.1140/epje/s10189-024-00418-7
    10. Haleemah Ghazwani, Muhammad Kamran Jamil, Ali Ahmad, Muhammad Azeem, Ali N. A. Koam, Applications of magnesium iodide structure via modified-polynomials, 2024, 14, 2045-2322, 10.1038/s41598-024-64344-6
    11. Ali N.A. Koam, Muhammad Azeem, Ali Ahmad, Ibtisam Masmali, Connection number-based molecular descriptors of skin cancer drugs, 2024, 15, 20904479, 102750, 10.1016/j.asej.2024.102750
    12. Khawlah Alhulwah, Ali N.A. Koam, Nasreen Almohanna, Muhammad Faisal Nadeem, Ali Ahmad, Topological indices and their correlation with structural properties of carbon nanotube Y-junctions, 2025, 70, 22113797, 108141, 10.1016/j.rinp.2025.108141
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1907) PDF downloads(79) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog