Research article Special Issues

Quantifying some distance topological properties of the non-zero component graph

  • Received: 21 August 2020 Accepted: 15 January 2021 Published: 21 January 2021
  • MSC : 20E45, 05C25, 05C12, 05C07, 05C69, 15A27

  • Several bioactivities of chemical compounds in a molecular graph can be expected by using many topological descriptors. A topological descriptor is a numeric quantity which quantify the topology of a graph. By defining the metric on a graph related with a vector space, we consider this graph in the context of few topological descriptors, and quantify the Wiener index, hyper Wiener index, Reciprocal complimentary Wiener index, Schultz molecular topological index and Harary index. We also provide the graphical comparison of our results to describe the relationship and dependence of these descriptors on the involved parameters.

    Citation: Fawaz E. Alsaadi, Faisal Ali, Imran Khalid, Masood Ur Rehman, Muhammad Salman, Madini Obad Alassafi, Jinde Cao. Quantifying some distance topological properties of the non-zero component graph[J]. AIMS Mathematics, 2021, 6(4): 3512-3524. doi: 10.3934/math.2021209

    Related Papers:

  • Several bioactivities of chemical compounds in a molecular graph can be expected by using many topological descriptors. A topological descriptor is a numeric quantity which quantify the topology of a graph. By defining the metric on a graph related with a vector space, we consider this graph in the context of few topological descriptors, and quantify the Wiener index, hyper Wiener index, Reciprocal complimentary Wiener index, Schultz molecular topological index and Harary index. We also provide the graphical comparison of our results to describe the relationship and dependence of these descriptors on the involved parameters.



    加载中


    [1] A. Das, Non-zero component graph of vector spaces over finite fields, J. Algebra Appl., 16 (2017), 01, 1750007.
    [2] A. Das, Nonzero component graph of a finite dimensional vector spaces, Comm. Algebra, 44 (2016), 3918–3926. doi: 10.1080/00927872.2015.1065866
    [3] J. Devillers, A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
    [4] M. V. Diudea, I. Gutman, Croat. Chem. Acta, 71 (1998), 21–51.
    [5] M. Imran, M. K. Siddiqui, A. A. E. Abunamous, D. Adi, S. H. Rafique, A. Q. Baig, Eccentricity based topological indices of an Oxide network, Mathematics, 6 (2018), 126. doi: 10.3390/math6070126
    [6] M. Imran, M. A. Ali, S. Ahmad, M. K. Siddiqui, A. Q. Baig, Topological sharacterization of the symmetrical structure of bismuth tri-iodide, Symmetry, 10 (2018), 201. doi: 10.3390/sym10060201
    [7] O. Ivancivc, Comparative study of Wiener descriptors for weighted molecular graphs, J. Chem. Inf. Comput. Sci., 14 (2000), 1412–1422.
    [8] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem., 12 (1993), 309–318. doi: 10.1007/BF01164642
    [9] D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci., 35 (1995), 50–52. doi: 10.1021/ci00023a007
    [10] J. B. Liu, I. Khalid, M. T. Rahim, M. U. Rehman, F. Ali, M. Salman, Eccentric topological properties of a graph associated to a finite dimensional vector space, Main Group Met. Chem., 43 (2020), 164–176. doi: 10.1515/mgmc-2020-0020
    [11] I. Lukovits, In: M. V. Diudea, Ed., QSAR/QSPR studies by molecular descriptors, Nova, Huntigton, 2001, 31–38.
    [12] Maplesoft, a division of Waterloo Maple Inc., 1996–2020.
    [13] MATLAB. 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc., 2018.
    [14] Z. Mihalić, N. Trinajstić, A graph theoretical approach to structure property relationships, J. Chem. Educ., 69 (1992), 701–712. doi: 10.1021/ed069p701
    [15] M. Mirzargar, A. R. Ashrafi, Some distance-based topological indices of a non-commuting graph, Hacettepe J. Math. Stat., 4 (2012), 515–526.
    [16] M. Munir, W. Nazeer, Z. Shahzadi, S. M. Kang, Some invariants of circulant graphs, Symmetry, 8 (2016), 134. doi: 10.3390/sym8110134
    [17] S. Nikolić, N. Trinajstić, Z. Mihalić, The Wiener index: Development and Applications, Croat. Chem. Acta, 68 (1995), 105–129.
    [18] D. Plavsić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12 (1993), 235–250. doi: 10.1007/BF01164638
    [19] M. Randić, Novel molecular description for structure property studies, Chem. Phys. Lett., 211 (1993), 478–483. doi: 10.1016/0009-2614(93)87094-J
    [20] D. H. Rouvray, Should we have designs on topological indices? Chemical Applications of Topology and Graph Theory; King, B.B., Ed. 28; Elsevier, Amsterdam, 1984,159–177.
    [21] H. P. Schultz, Topological organic chemistry 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci., 29 (1989), 227–228. doi: 10.1021/ci00063a012
    [22] H. Wiener, Correlation of heats of isomerization and differences in heats of vaporization of isomers, among the paraffin hydrocarbons, J. Am. Chem. Soc., 69 (1947), 17–20. doi: 10.1021/ja01193a005
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2576) PDF downloads(134) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog