Research article Special Issues

Computation of eccentric topological indices of zero-divisor graphs based on their edges

  • Received: 09 February 2022 Revised: 31 March 2022 Accepted: 10 April 2022 Published: 13 April 2022
  • MSC : 05C25, 05C90, 05C10

  • The topological index of a graph gives its topological property that remains invariant up to graph automorphism. The topological indices which are based on the eccentricity of a chemical graph are molecular descriptors that remain constant in the whole molecular structure and therefore have a significant position in chemical graph theory. In recent years, various topological indices are intensively studied for a variety of graph structures. In this article, we will consider graph structures associated with zero-divisors of commutative rings, called zero-divisor graphs. We will compute the topological indices for a class of zero-divisor graphs of finite commutative rings that are based on their edge eccentricity. More precisely, we will compute the first and third index of Zagreb eccentricity, the eccentricity index of geometric arithmetic, the atomic bonding connectivity eccentricity index, and the eccentric harmonic index of the fourth type related to graphs constructed using zero-divisors of finite commutative rings $ \mathbb{Z}_{p^n}. $

    Citation: Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari. Computation of eccentric topological indices of zero-divisor graphs based on their edges[J]. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641

    Related Papers:

  • The topological index of a graph gives its topological property that remains invariant up to graph automorphism. The topological indices which are based on the eccentricity of a chemical graph are molecular descriptors that remain constant in the whole molecular structure and therefore have a significant position in chemical graph theory. In recent years, various topological indices are intensively studied for a variety of graph structures. In this article, we will consider graph structures associated with zero-divisors of commutative rings, called zero-divisor graphs. We will compute the topological indices for a class of zero-divisor graphs of finite commutative rings that are based on their edge eccentricity. More precisely, we will compute the first and third index of Zagreb eccentricity, the eccentricity index of geometric arithmetic, the atomic bonding connectivity eccentricity index, and the eccentric harmonic index of the fourth type related to graphs constructed using zero-divisors of finite commutative rings $ \mathbb{Z}_{p^n}. $



    加载中


    [1] A. Ahmad, Computation of certain topological properties of honeycomb networks and Graphene, Discret. Math. Algorit., 9 (2017), 1750064. https://doi.org/10.1142/S1793830917500641 doi: 10.1142/S1793830917500641
    [2] A. Ahmad, On the degree based topological indices of benzene ring embedded in p-type-surface in 2D network, Hacet. J. Math. Stat., 47 (2018), 9–18. https://doi.org/10.15672/HJMS.2017.443 doi: 10.15672/HJMS.2017.443
    [3] A. Ahmad, A. Haider, Computing the radio labeling associated with zero-divisor graph of a commutative ring, U. Politeh. Buch. Ser. A, 81 (2019), 65–72.
    [4] S. Akbari, A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274 (2004), 847–855. https://doi.org/10.1016/S0021-8693(03)00435-6 doi: 10.1016/S0021-8693(03)00435-6
    [5] S. Akhter, W. Gao, M. Imran, M. R. Farahani, On topological indices of honeycomb networks and graphene networks, Hacet. J. Math. Stat., 47 (2018), 19–35. https://doi.org/10.15672/HJMS.2017.464 doi: 10.15672/HJMS.2017.464
    [6] D. F. Anderson, T. Asir, A. Badawi, T. T. Chelvam, Graphs from rings, Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-88410-9
    [7] D. F. Anderson, P. S. Livingston, The zero-divisor graph of commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840
    [8] T. Asir, V. Rabikka, The Wiener index of the graph Zn, Discrete Appl. Math., 2022.
    [9] T. Asir, V. Rabikka, H. D. Su, On Wiener Index of unit graph associated with a commutative ring, Algebra Colloq., to appear.
    [10] M. Bača, J. Horvràthovà, M. Mokrišovà, A. Suhànyiovà, On topological indices of fullerenes, Appl. Math. Comput., 251 (2015), 154–161.
    [11] A. Q. Baig, M. Imran, H. Ali, On topological indices of poly oxide, poly silicate, DOX, and DSL networks, Can. J. Chem., 93 (2015), 730–739.
    [12] A. Q. Baig, M. Imran, H. Ali, S. U. Rehman, Computing topological polynomial of certain nanostructures, J. Optoelectron. Adv. Mat., 17 (2015), 877–883.
    [13] I. Beck, Coloring of a commutative ring, J. Algebra, 116 (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5 doi: 10.1016/0021-8693(88)90202-5
    [14] K. Elahi, A. Ahmad, R. Hasni, Construction algorithm for zero-divisor graphs of finite commutative rings and their vertex-based eccentric topological indices, Mathematics, 301 (2018). https://doi.org/10.3390/math6120301 doi: 10.3390/math6120301
    [15] M. R. Farahani, Eccentricity version of atom bond connectivity index of benzenoid family $ABC_5$(Hk), World Appl. Sci. J. Chem., 21 (2013), 1260–1265.
    [16] M. R. Farahani, S. Ediz, M. Imran, On novel harmonic indices of certain nanotubes, Int. J. Adv. Biotechnol. Res., 8 (2017), 277–282.
    [17] Y. Gao, S. Ediz, M. R. Farahani, M. Imran, On the second harmonic index of titania nanotubes, Drug Des. Int. Prop. Int. J., 1 (2018). https://doi.org/10.32474/DDIPIJ.2018.01.000102 doi: 10.32474/DDIPIJ.2018.01.000102
    [18] W. Gao, M. K. Siddiqui, M. Naeem, N. A. Rehman, Topological characterization of carbon graphite and crystal cubic carbon structures, Molecules, 22 (2017), 1496. https://doi.org/10.3390/molecules22091496 doi: 10.3390/molecules22091496
    [19] M. Ghorbani, M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat, 26 (2012), 93–100. https://doi.org/10.2298/FIL1201093G doi: 10.2298/FIL1201093G
    [20] M. Ghorbani, A. Khaki, A note on the fourth version of geometric-arithmetic index, Optoelectron. Adv. Mater. Rapid Commum., 4 (2010), 2212–2215.
    [21] S. Gupta, M. Singh, A. K. Madan, Application of graph theory: Relationship of eccentric connectivity index and wiener's index with Anti-inflammatory Activity, J. Math. Anal. Appl., 266 (2002), 259–268. https://doi.org/10.1006/jmaa.2000.7243 doi: 10.1006/jmaa.2000.7243
    [22] I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer-Verlag, New York, 1986.
    [23] A. Haider, U. Ali, M. A. Ansari, Properties of Tiny braids and the associated commuting graph, J. Algebr. Comb., 53 (2021), 147–155. https://doi.org/10.1007/s10801-019-00923-5 doi: 10.1007/s10801-019-00923-5
    [24] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput., 240 (2014), 213–228.
    [25] M. Imran, M. K. Siddiqui, A. A. E. Abunamous, D. Adi, S. H. Rafique, A. Q. Baig, Eccentricity based topological indices of an oxide network, Mathematics, 6 (2018). https://doi.org/10.3390/math6070126 doi: 10.3390/math6070126
    [26] A. N. A. Koam, Ali Ahmad, Azeem Haider, On eccentric topological indices based on edges of zero divisor graphs, Symmetry, 11 (2019), 907. https://doi.org/10.3390/sym11070907 doi: 10.3390/sym11070907
    [27] A. N. A. Koam, Ali Ahmad, Azeem Haider, Radio number associated with zero divisor graph, Mathematics, 8 (2020), 2187. https://doi.org/10.3390/math8122187 doi: 10.3390/math8122187
    [28] M. F. Nadeem, S. Zafar, Z. Zahid, On certain topological indices of the line graph of subdivision graphs, Appl. Math. Comput., 271 (2015), 790–794.
    [29] S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155–1166. https://doi.org/10.1016/j.disc.2006.07.025 doi: 10.1016/j.disc.2006.07.025
    [30] K. Selvakumar, P. Gangaeswari, G. Arunkumar, The wiener index of the zero-divisor graph of a finite commutative ring with unity, Discrete Appl. Math., 2022, In press.
    [31] Z. Shao, M. K. Siddiqui, M. H. Muhammad, Computing zagreb indices and zagreb polynomials for symmetrical nanotubes, Symmetry, 10 (2018), 244. https://doi.org/10.3390/sym10070244 doi: 10.3390/sym10070244
    [32] Z. Shao, P. Wu, Y. Gao, I. Gutman, X. Zhang, On the maximum $ABC$ index of graphs without pendent vertices, Appl. Math. Comput., 315 (2017), 298–312. https://doi.org/10.1016/j.amc.2017.07.075 doi: 10.1016/j.amc.2017.07.075
    [33] Z. Shao, P. Wu, X. Zhang, D. Dimitrov, J. Liu, On the maximum $ABC$ index of graphs with prescribed size and without pendent vertices, IEEE Access, 6 (2018), 27604–27616. https://doi.org/10.1109/ACCESS.2018.2831910 doi: 10.1109/ACCESS.2018.2831910
    [34] M. K. Siddiqui, M. Imran, A. Ahmad, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput., 280 (2016), 132–139.
    [35] D. Vukičević, A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov., 57 (2010), 524–528.
    [36] S. Wang, M. R. Farahani, M. R. R. Kanna, M. K. Jamil, R. P. Kumar, The wiener index and the hosoya polynomial of the Jahangir graphs, Appl. Comput. Math., 5 (2016), 138–141.
    [37] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1983) PDF downloads(218) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog