The aim of this paper is to introduce and study the concept of a hyperideal-based zero-divisor graph associated with a general hyperring. This is a generalized version of the zero-divisor graph associated with a commutative ring. For any general hyperring $ R $ having a hyperideal $ I $, the $ I $-based zero-divisor graph $ \Gamma^{(I)}(R) $ associated with $ R $ is the simple graph whose vertices are the elements of $ R\setminus I $ having their hyperproduct in $ I $, and two distinct vertices are joined by an edge when their hyperproduct has a non-empty intersection with $ I $. In the first part of the paper, we concentrate on some general properties of this graph related to absorbing elements, while the second part is dedicated to the study of the $ I $-based zero-divisor graph associated to the general hyperring $ \mathbb{Z}_n $ of the integers modulo $ n $, when $ n = 2p^mq $, with $ p $ and $ q $ two different odd primes, and fixing the hyperideal $ I $.
Citation: Mohammad Hamidi, Irina Cristea. Hyperideal-based zero-divisor graph of the general hyperring $ \mathbb{Z}_{n} $[J]. AIMS Mathematics, 2024, 9(6): 15891-15910. doi: 10.3934/math.2024768
The aim of this paper is to introduce and study the concept of a hyperideal-based zero-divisor graph associated with a general hyperring. This is a generalized version of the zero-divisor graph associated with a commutative ring. For any general hyperring $ R $ having a hyperideal $ I $, the $ I $-based zero-divisor graph $ \Gamma^{(I)}(R) $ associated with $ R $ is the simple graph whose vertices are the elements of $ R\setminus I $ having their hyperproduct in $ I $, and two distinct vertices are joined by an edge when their hyperproduct has a non-empty intersection with $ I $. In the first part of the paper, we concentrate on some general properties of this graph related to absorbing elements, while the second part is dedicated to the study of the $ I $-based zero-divisor graph associated to the general hyperring $ \mathbb{Z}_n $ of the integers modulo $ n $, when $ n = 2p^mq $, with $ p $ and $ q $ two different odd primes, and fixing the hyperideal $ I $.
[1] | M. Al-Tahan, B. Davvaz, Hypergroups defined on hypergraphs and their regular relations, Kragujev. J. Math., 46 (2022), 487–498. https://doi.org/10.46793/KgJMat2203.487T doi: 10.46793/KgJMat2203.487T |
[2] | D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840 |
[3] | R. Ameri, M. Hamidi, H. Mohammadi, Hyperideals of $($Finite$)$ General hyperrings, Math. Interdisc. Res., 6 (2021), 257–273. https://doi.org/10.22052/MIR.2021.240436.1269 doi: 10.22052/MIR.2021.240436.1269 |
[4] | I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5 doi: 10.1016/0021-8693(88)90202-5 |
[5] | A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: graphical representation, Am. J. Math., 1 (1878), 174–176. https://doi.org/10.2307/2369306 doi: 10.2307/2369306 |
[6] | P. J. Cameron, What can graphs and algebraic structures say to each other? AKCE Int. J. Graphs Co., 2023, 1–6. https://doi.org/10.1080/09728600.2023.2290036 doi: 10.1080/09728600.2023.2290036 |
[7] | G. A. Cannon, K. M. Neuerburg, S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, In: Nearrings and nearfields, Dordrecht: Springer, 2005,189–200. https://doi.org/10.1007/1-4020-3391-5_8 |
[8] | P. Corsini, Hypergraphs and hypergroups, Algebr. Univ., 35 (1996), 548–555. https://doi.org/10.1007/BF01243594 doi: 10.1007/BF01243594 |
[9] | I. Cristea, M. Kankaraš, The reducibility concept in general hyperrings, Mathematics, 9 (2021), 2037. https://doi.org/10.3390/math9172037 doi: 10.3390/math9172037 |
[10] | B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, USA: International Academic Press, 2007. |
[11] | F. R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206–214. https://doi.org/10.1007/s002330010128 doi: 10.1007/s002330010128 |
[12] | D. Dolžan, P. Oblak, The zero-divisor graphs of rings and semirings, Int. J. Algebr. Comput., 22 (2012), 1250033. https://doi.org/10.1142/S0218196712500336 doi: 10.1142/S0218196712500336 |
[13] | S. E. Atani, An ideal based zero-divisor graph of a commutative semiring, Glas. Mat., 44 (2009), 141–153. |
[14] | M. Hamidi, R. Ameri, H. Mohammadi, Hyperideal-based intersection graphs, Indian J. Pure Appl. Math., 54 (2023), 120–132. https://doi.org/10.1007/s13226-022-00238-5 doi: 10.1007/s13226-022-00238-5 |
[15] | M. Hamidi, A. B. Saeid, Graphs derived from multirings, Soft Comput., 25 (2021), 13921–13932. https://doi.org/10.1007/s00500-021-06361-5 doi: 10.1007/s00500-021-06361-5 |
[16] | M. Hamidi, A. B. Saeid, On Derivable Tree, Trans. Comb., 8 (2019), 21–43. |
[17] | M. Iranmanesh, M. Jafarpour, I. Cristea, The non-commuting graph of a non-central hypergroup, Open Math., 17 (2019), 1035–1044. https://doi.org/10.1515/math-2019-0084 doi: 10.1515/math-2019-0084 |
[18] | S. Jančic-Rašovic, About the hyperring of polynomials, It. J. Pure Appl. Math., 21 (2007), 223–234. |
[19] | A. Kalampakas, S. Spartalis, A. Tsikgas, The path hyperoperation, An. St. Univ. Ovidius Const. Ser. Mat., 22 (2014), 141–153. |
[20] | A. Kalampakas, S. Spartalis, Path hypergroupoids: Commutativity and graph connectivity, Eur. J. Combin., 44 (2015), 257–264. https://doi.org/10.1016/j.ejc.2014.08.012 doi: 10.1016/j.ejc.2014.08.012 |
[21] | M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci., 6 (1983), 240850 https://doi.org/10.1155/S0161171283000265 doi: 10.1155/S0161171283000265 |
[22] | R. Levy, J. Shapiro, The zero-divisor graph of a Von Neumann regular ring, Comm. Algebra, 30 (2002), 745–750. https://doi.org/10.1081/AGB-120013178 doi: 10.1081/AGB-120013178 |
[23] | G. Massouros, C. Massouros, Hypercompositional algebra, computer science and geometry, Mathematics, 8 (2020), 1338. https://doi.org/10.3390/math8081338 doi: 10.3390/math8081338 |
[24] | C. G. Massouros, On path hypercompositions in graphs and automata, In: MATEC Web of Conferences, 2016, 05003. https://doi.org/10.1051/matecconf/20164105003 |
[25] | C. G. Massouros, G. G. Massouros, Hypergroups associated with graphs and automata, In: Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, 2009,164–167. |
[26] | C. G. Massouros, G. G. Massouros, On the borderline of fields and hyperfields, Mathematics, 11 (2023), 1289. https://doi.org/10.3390/math11061289 doi: 10.3390/math11061289 |
[27] | E. Mehdi-Nezhad, A.M. Rahimi, A note on $k$-zero-divisor hypergraphs of some commutative rings, Ital. J. Pure Appl. Mat., 50 (2023), 495–502. |
[28] | S. M. Mirafzal, The automorphism group of the Andrasfai graph, Discrete Math. Lett., 10 (2022) 60–63. https://doi.org/10.47443/dml.2022.016 doi: 10.47443/dml.2022.016 |
[29] | J. Mittas, Hypergroupes canoniques hypervalues, C. R. Acad. Sci., 271 (1970), 4–7. |
[30] | A. Nikkhah, B. Davvaz, S. Mirvakili, Hypergroups constructed from hypergraphs, Filomat, 32 (2018), 3487–3494. https://doi.org/10.2298/FIL1810487N doi: 10.2298/FIL1810487N |
[31] | S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commun. Rings, 1 (2002), 203–211. |
[32] | S. P. Redmond, An Ideal-based zero-divisor graph of a commutative ring, Commun. Algebra, 31 (2003), 4425–4443. https://doi.org/10.1081/AGB-120022801 doi: 10.1081/AGB-120022801 |
[33] | S. Spartalis, A class of hyperrings, Riv. Math. Pura Appl., 4 (1989), 55–64. |
[34] | T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield. In: Proceedings of the 4th International Congress on Algebraic Hyperstructures and Applications, Singapore: World Scientific Publishing, 1991, 203–211. |