In this paper, we studied the properties of generalized John domains in metric space. We prove that a domain $ D $ is a $ \varphi $-John domain if, and only if, $ D\backslash P $ is a $ \varphi' $-John domain, where $ P $ is a subset of $ D $ containing finitely many points of $ D $. Meanwhile, we also showed that the union of $ \varphi $-John domains is a $ \varphi'' $-John domain in metric space.
Citation: Hongjun Liu, Fang Yan, Ling Xia. The properties of generalized John domains in metric spaces[J]. AIMS Mathematics, 2024, 9(6): 15875-15890. doi: 10.3934/math.2024767
In this paper, we studied the properties of generalized John domains in metric space. We prove that a domain $ D $ is a $ \varphi $-John domain if, and only if, $ D\backslash P $ is a $ \varphi' $-John domain, where $ P $ is a subset of $ D $ containing finitely many points of $ D $. Meanwhile, we also showed that the union of $ \varphi $-John domains is a $ \varphi'' $-John domain in metric space.
[1] | A. F. Beardon, The Apollonian metric of a domain in $\mathbb{R}^n$, In: Quasiconformal mappings and analysis, New York: Springer, 1998, 91–108. https://doi.org/10.1007/978-1-4612-0605-7_8 |
[2] | A. Beurling, L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math., 96 (1956), 125–142. https://doi.org/10.1007/BF02392360 doi: 10.1007/BF02392360 |
[3] | O. J. Broch, Geometry of John disks, Ph. D. Thesis, NTNU, 2005. |
[4] | S. M. Buckley, D. A. Herron, X. Xie, Metric space inversions, quasihyperbolic diatance, and uniform space, Indiana Univ. Math. J., 57 (2008), 837–890. |
[5] | F. W. Gehring, K. Hag, O. Martio, Quasihyperbolic geodesics in John domains, Mathe. Scand., 65 (1989), 75–92. |
[6] | F. W. Gehring, B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Anal. Math., 36 (1979), 50–74. http://doi.org/10.1007/BF02798768 doi: 10.1007/BF02798768 |
[7] | F. W. Gehring, B. P. Palka, Quasiconformally homogeneous domains, J. Anal. Math., 30 (1976), 172–199. https://doi.org/10.1007/BF02786713 doi: 10.1007/BF02786713 |
[8] | T. T. Guan, Some properties of quasisymmetric mappings and John domains, Maste Thesis, Hunan Normal university, 2017. |
[9] | C. Guo, Generalized quasidisks and conformality II, Proc. Amer. Math. Soc., 143 (2015), 3505–3517. https://doi.org/10.1090/S0002-9939-2015-12449-5 doi: 10.1090/S0002-9939-2015-12449-5 |
[10] | C. Guo, Uniform continuity of quasiconformal mappings onto generalized John domains, Ann. Fenn. Math., 40 (2015), 183–202. https://doi.org/10.5186/aasfm.2015.4010 doi: 10.5186/aasfm.2015.4010 |
[11] | C. Guo, P. Koskela, Generalized John disks, Cent. Eur. J. Math., 12 (2014), 349–361. https://doi.org/10.2478/s11533-013-0344-3 doi: 10.2478/s11533-013-0344-3 |
[12] | C. Guo, P. Koskela, J. Takkinen, Generalized quasidisks and conformality, Publ. Mat., 58 (2014), 193–212. |
[13] | J. Heinonen, P. Koskela, Definitions of quasiconformality, Invent. Math., 120 (1995), 61–79. https://doi.org/10.1007/BF01241122 doi: 10.1007/BF01241122 |
[14] | J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), 1–61. https://doi.org/10.1007/BF02392747 doi: 10.1007/BF02392747 |
[15] | D. A. Herron, John domains and the quasihyperbolic metric, Complex Var. Theory Appl. Int. J. 39 (1999), 327–334. https://doi.org/10.1080/17476939908815199 |
[16] | M. Huang, S. Ponnusamy, X. Wang, Decomposition and removability properties of John domains, Proc. Math. Sci., 118 (2008), 357–570. https://doi.org/10.1007/s12044-008-0028-2 doi: 10.1007/s12044-008-0028-2 |
[17] | F. John, Rotation and strain, Commun. Pur. Appl. Math., 14 (1961), 391–413. https://doi.org/10.1002/cpa.3160140316 doi: 10.1002/cpa.3160140316 |
[18] | P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J., 29 (1980), 41–66. |
[19] | P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71–88. https://doi.org/10.1007/bf02392869 doi: 10.1007/bf02392869 |
[20] | K. Kim, N. Langmeyer, Harmonic measure and hyperbolic distance in John disks, Math. Scand., 83 (1998), 283–299. https://doi.org/10.7146/math.scand.a-13857 doi: 10.7146/math.scand.a-13857 |
[21] | Y. Li, A. Rasila, Q. Zhou, Removability of uniform metric space, Mediterr. J. Math., 19 (2022), 139. https://doi.org/10.1007/s00009-022-02055-w doi: 10.1007/s00009-022-02055-w |
[22] | Y. Li, M. Vuorinen, Q. Zhou, Weakly quasisymmetric maps and uniform spaces, Comput. Methods Funct. Theory, 18 (2018), 689–715. https://doi.org/10.1007/S40315-018-0248-0 doi: 10.1007/S40315-018-0248-0 |
[23] | O. Martio, Definitions of uniform domains, Ann. Fenn. Math., 5 (1980), 197–205. https://doi.org/10.5186/aasfm.1980.0517 doi: 10.5186/aasfm.1980.0517 |
[24] | O. Martio, J. Sarvas, Injectivity theorems in plane and space, Ann. Fenn. Math., 4 (1979), 383–401. https://doi.org/10.5186/aasfm.1978-79.0413 doi: 10.5186/aasfm.1978-79.0413 |
[25] | R. Näkki, J. Väisälä, John disks, Expo. Math., 9 (1991), 3–43. |
[26] | P. Tukia, J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Fenn. Math., 5 (1980), 97–114. https://doi.org/10.5186/aasfm.1980.0531 doi: 10.5186/aasfm.1980.0531 |
[27] | J. Väisälä, Quasisymmetric embeddings in Euclidean spaces, Trans. Amer. Math. Soc., 264 (1981), 191–204. https://doi.org/10.1090/s0002-9947-1981-0597876-7 doi: 10.1090/s0002-9947-1981-0597876-7 |
[28] | J. Väisälä, Uniform domains, Tohoku Math. J., 40 (1988), 101–118. https://doi.org/10.2748/tmj/1178228081 doi: 10.2748/tmj/1178228081 |
[29] | J. Väisälä, Quasiconformal maps of cylindrical domains, Acta Math., 162 (1989), 201–225. https://doi.org/10.1007/BF02392837 doi: 10.1007/BF02392837 |
[30] | J. Väisälä, Free quasiconformality in Banach spaces, II, Ann. Fenn. Math., 16 (1991), 255–310. https://doi.org/10.5186/aasfm.1991.1629 doi: 10.5186/aasfm.1991.1629 |
[31] | J. Väisälä, Relatively and inner uniform domains, Conform. Geom. Dyn. Amer. Math. Soc., 2 (1998), 56–88. |
[32] | J. Väisälä, The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Banach Center Publications, 48 (1999), 55–118. https://doi.org/10.4064/-48-1-55-118 doi: 10.4064/-48-1-55-118 |
[33] | J. Väisälä, Unions of John domains, P. Am. Math. Soc., 128 (1999), 1135–1140. https://doi.org/10.2307/119789 doi: 10.2307/119789 |
[34] | Q. Zhou, L. Li, A. Rasila, Generalized John Gromov hyperbolic domains and extensions of maps, Math. Scand., 127 (2021). https://doi.org/10.7146/math.scand.a-128968 |
[35] | Q. Zhou, Y. Li, A. Rasila, Gromov hyperbolicity, John spaces, and quasihyperbolic geodesics, J. Geom. Anal., 32 (2022), 228. https://doi.org/10.1007/s12220-022-00968-2 doi: 10.1007/s12220-022-00968-2 |
[36] | Q. Zhou, S. Ponnusamy, Quasihyperbolic geodesics are cone arcs, J. Geom. Anal. 34 (2024), 2. https://doi.org/10.1007/s12220-023-01448-x |
[37] | Q. Zhou, S. Ponnusamy, Gromov hyperbolic John is quasihyperbolic John I, 2024. https://doi.org/10.2422/2036-2145.202207_006 |