Citation: Habib ur Rehman, Poom Kumam, Kanokwan Sitthithakerngkiet. Viscosity-type method for solving pseudomonotone equilibrium problems in a real Hilbert space with applications[J]. AIMS Mathematics, 2021, 6(2): 1538-1560. doi: 10.3934/math.2021093
[1] | P. N. Anh, L. T. H. An, The subgradient extragradient method extended to equilibrium problems, Optimization, 64 (2012), 225-248. |
[2] | A. Antipin, Equilibrium programming: proximal methods, Comput. Math. Math. Phys., 37 (1997), 1285-1296. |
[3] | M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optimiz. Theory App., 9 (1996), 31-43. |
[4] | G. Bigi, M. Castellani, M. Pappalardo, M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Res., 227 (2013), 1-11. doi: 10.1016/j.ejor.2012.11.037 |
[5] | G. Bigi, M. Castellani, M. Pappalardo, M. Passacantando, Nonlinear programming techniques for equilibria, Springer International Publishing, 2019. |
[6] | E. Blum, From optimization and variational inequalities to equilibrium problems, Mathematics Students, 63 (1994), 123-145. |
[7] | F. Browder, W. Petryshyn, Construction of fixed points of nonlinear mappings in hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228. doi: 10.1016/0022-247X(67)90085-6 |
[8] | Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in hilbert space, J. Optimiz. Theory App., 148 (2010), 318-335. |
[9] | C. E. Chidume, A. Adamu, L. C. Okereke, A krasnoselskii-type algorithm for approximating solutions of variational inequality problems and convex feasibility problems, J. Nonlinear Var. Anal., 2 (2018), 203-218. doi: 10.23952/jnva.2.2018.2.07 |
[10] | S. Dafermos, Traffic equilibrium and variational inequalities, Transport. Sci., 14 (1980), 42-54. doi: 10.1287/trsc.14.1.42 |
[11] | K. Fan, A minimax inequality and applications, Inequalities Ⅲ, New York: Academic Press, 1972. |
[12] | M. Farid, The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in hilbert spaces, J. Appl. Numer. Optim., 1 (2019), 335-345. |
[13] | S. D. Flåm, A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78 (1996), 29-41. doi: 10.1007/BF02614504 |
[14] | F. Giannessi, A. Maugeri, P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models, Springer Science & Business Media, 2006. |
[15] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2017. |
[16] | D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, RACSAM, 111 (2016), 823-840. |
[17] | D. V. Hieu, P. K. Quy, L. V. Vy, Explicit iterative algorithms for solving equilibrium problems, Calcolo, 56 (2019), 11. doi: 10.1007/s10092-019-0308-5 |
[18] | G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747-756. |
[19] | S. I. Lyashko, V. V. Semenov, A new two-step proximal algorithm of solving the problem of equilibrium programming, In: Optimization and its applications in control and data sciences, Springer International Publishing, 2016,315-325. |
[20] | P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912. doi: 10.1007/s11228-008-0102-z |
[21] | G. Mastroeni, On auxiliary principle for equilibrium problems, In: Nonconvex optimization and its applications, Springer, 2003,289-298. |
[22] | A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91-100. |
[23] | A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55. doi: 10.1006/jmaa.1999.6615 |
[24] | L. Muu, W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. Theor., 18 (1992), 1159-1166. doi: 10.1016/0362-546X(92)90159-C |
[25] | F. U. Ogbuisi, Y. Shehu, A projected subgradient-proximal method for split equality equilibrium problems of pseudomonotone bifunctions in banach spaces, J. Nonlinear Var. Anal., 3 (2019), 205-224. |
[26] | T. D. Quoc, P. N. Anh, L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2011), 139-159. |
[27] | T. D. Quoc, M. N. V. H. Le Dung, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749-776. doi: 10.1080/02331930601122876 |
[28] | R. T. Rockafellar, Convex analysis, Princeton University Press, 1970. |
[29] | P. Santos, S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Comput. Appl. Math., 30 (2011), 91-107. |
[30] | T. M. M. Sow, An iterative algorithm for solving equilibrium problems, variational inequalities and fixed point problems of multivalued quasi-nonexpansive mappings, Appl. Set-Valued Anal. Optim., 1 (2019), 171-185. |
[31] | G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 258 (1964), 4413. |
[32] | S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506-515. doi: 10.1016/j.jmaa.2006.08.036 |
[33] | L. Q. Thuy, C. F. Wen, J. C. Yao, T. N. Hai, An extragradient-like parallel method for pseudomonotone equilibrium problems and semigroup of nonexpansive mappings, Miskolc Math. Notes, 19 (2018), 1185. doi: 10.18514/MMN.2018.2114 |
[34] | D. Q. Tran, M. L. Dung, V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749-776. doi: 10.1080/02331930601122876 |
[35] | H. ur Rehman, P. Kumam, A. B. Abubakar, Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comp. Appl. Math., 39 (2010), 100. |
[36] | H. ur Rehman, P. Kumam, Y. J. Cho, P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems. J. Inequal. Appl., 2019 (2019), 282. doi: 10.1186/s13660-019-2233-1 |
[37] | H. ur Rehman, P. Kumam, Y. Je Cho, Y.I. Suleiman, W. Kumam, Modified popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems. Optimization Methods and Software, 2020, 1-32. |
[38] | H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry, 12 (2020), 463. doi: 10.3390/sym12030463 |
[39] | N. T. Vinh, L. D. Muu, Inertial extragradient algorithms for solving equilibrium problems, Acta Mathematica Vietnamica, 44 (2019), 639-663. doi: 10.1007/s40306-019-00338-1 |
[40] | H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, B. Aust. Math. Soc., 65 (2002), 109-113. doi: 10.1017/S0004972700020116 |
[41] | J. C. Yao, Variational inequalities with generalized monotone operators, Math. Oper. Res., 19 (1994), 691-705. doi: 10.1287/moor.19.3.691 |