Graph labeling is a source of valuable mathematical models for an extensive range of applications in technologies (communication networks, cryptography, astronomy, data security, various coding theory problems). An edge $ \; \delta - $ graceful labeling of a graph $ G $ with $ p\; $ vertices and $ q\; $ edges, for any positive integer $ \; \delta $, is a bijective $ \; f\; $ from the set of edge $ \; E(G)\; $ to the set of positive integers $ \; \{ \delta, \; 2 \delta, \; 3 \delta, \; \cdots\; , \; q\delta\; \} $ such that all the vertex labels $ \; f^{\ast} [V(G)] $, given by: $ f^{\ast}(u) = (\sum\nolimits_{uv \in E(G)} f(uv)\; )\; mod\; (\delta \; k) $, where $ k = max (p, q) $, are pairwise distinct. In this paper, we show the existence of an edge $ \; \delta- $ graceful labeling, for any positive integer $ \; \delta $, for the following graphs: the splitting graphs of the cycle, fan, and crown, the shadow graphs of the path, cycle, and fan graph, the middle graphs and the total graphs of the path, cycle, and crown. Finally, we display the existence of an edge $ \; \delta- $ graceful labeling, for the twig and snail graphs.
Citation: Mohamed R. Zeen El Deen, Ghada Elmahdy. New classes of graphs with edge $ \; \delta- $ graceful labeling[J]. AIMS Mathematics, 2022, 7(3): 3554-3589. doi: 10.3934/math.2022197
Graph labeling is a source of valuable mathematical models for an extensive range of applications in technologies (communication networks, cryptography, astronomy, data security, various coding theory problems). An edge $ \; \delta - $ graceful labeling of a graph $ G $ with $ p\; $ vertices and $ q\; $ edges, for any positive integer $ \; \delta $, is a bijective $ \; f\; $ from the set of edge $ \; E(G)\; $ to the set of positive integers $ \; \{ \delta, \; 2 \delta, \; 3 \delta, \; \cdots\; , \; q\delta\; \} $ such that all the vertex labels $ \; f^{\ast} [V(G)] $, given by: $ f^{\ast}(u) = (\sum\nolimits_{uv \in E(G)} f(uv)\; )\; mod\; (\delta \; k) $, where $ k = max (p, q) $, are pairwise distinct. In this paper, we show the existence of an edge $ \; \delta- $ graceful labeling, for any positive integer $ \; \delta $, for the following graphs: the splitting graphs of the cycle, fan, and crown, the shadow graphs of the path, cycle, and fan graph, the middle graphs and the total graphs of the path, cycle, and crown. Finally, we display the existence of an edge $ \; \delta- $ graceful labeling, for the twig and snail graphs.
[1] | G. S. Bloom, S. W. Glomb, Application of numbered undirected graphs, IEEE, 65 (1977), 562–570. doi: 10.1109/PROC.1977.10517. doi: 10.1109/PROC.1977.10517 |
[2] | J. Gross, J. Yellen, Graph theory and its applications, 3 Eds., London, UK: Chapman and Hall/CRC Press, 2018. |
[3] | G. U. Maheswari, G. M. Jebarani, V. Balaji, Coding techniques through Fibonacci webs, difference cordial labeling and GMJ code method, J. Phys. Conf. Ser., 1139 (2018), 012077. doi: 10.1088/1742-6596/1139/1/012077. doi: 10.1088/1742-6596/1139/1/012077 |
[4] | G. Prasad, G. U. Maheswari, Matrix coding technique on sunflower graphs with edge product cordial labeling, IOP Conf. Ser. Mater. Sci. Eng., 872 (2020), 012004. doi: 10.1088/1757-899X/872/1/012004. doi: 10.1088/1757-899X/872/1/012004 |
[5] | J. A. Bondy, U. S. Murty, Graph theory, (Graduate texts in mathematics 244), Springer, New York, 2008. |
[6] | B. D. Acharya, S. Arumugam, A. Rosa, Labeling of discrete structures and applications, New Delhi, India: Narosa Publishing House, 2008. |
[7] | S. P. Lo, On edge-graceful labeling of graphs, Congr. Number., 50 (1985), 231–241. |
[8] | M. A. Seoud, M. A. Salim, Further results on edge-odd graceful graphs, Turkish J. Math., 40 (2016), 647–656. |
[9] | S. N. Daoud, Edge odd graceful labeling of some path and cycle-related graphs, AKCE Int. J. Graphs Comb., 14 (2017), 178–203. doi: 10.1016/j.akcej.2017.03.001. doi: 10.1016/j.akcej.2017.03.001 |
[10] | M. R. Zeen El Deen, Strong k-edge odd graceful labeling of graphs, Int. Math. Forum, 13 (2018), 393–405. doi: 10.12988/imf.2018.8634. doi: 10.12988/imf.2018.8634 |
[11] | M. R. Zeen El Deen, Edge-even graceful labeling of some graphs, J. Egypt. Math. Soc., 27 (2019), 20. doi: 10.1186/s42787-019-0025-x. doi: 10.1186/s42787-019-0025-x |
[12] | M. R. Zeen El Deen, N. A. Omar, Further results on edge even graceful labeling of the join of two graphs, J. Egypt. Math. Soc., 28 (2020), 21. doi: 10.1186/s42787-020-00077-5. doi: 10.1186/s42787-020-00077-5 |
[13] | M. R. Zeen El Deen, N. A. Omar, Extending of edge even graceful labeling of graphs to strong $r$-edge even graceful labeling, J. Math., 2021 (2021), 1–19. doi: 10.1155/2021/6643173. doi: 10.1155/2021/6643173 |
[14] | J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2018. |
[15] | M. R. Zeen El Deen, Edge $\delta-$ graceful labeling for some cyclic-related graphs, Adv. Math. Phys., 2020 (2020), 6273245. doi: 10.1155/2020/6273245. doi: 10.1155/2020/6273245 |