A reverse edge magic (REM) labeling of a graph $ G(V, E) $ with $ p $ vertices and $ q $ edges is a bijection $ f:V\left(G \right)\cup E\left(G \right)\to \{1, 2, \cdot \cdot \cdot, p+q\} $ such that $ k = f\left(uv \right)-\{f\left(u \right)+f\left(v \right)\} $ is a constant $ k $ for any edge $ uv\in E\left(G \right). $ A REM labeling $ f $ is called reverse super edge magic (RSEM) labeling if $ f(V(G)) = \; \{1, 2, 3, 4, 5, \ldots, v\} $ and $ f(E(G)) = \{v+1, v+2, v+3, v+4, v+5, \ldots, v+e\}. $ In this paper, we find some new classes of RSEM labeling and the investigation of the connection between the RSEM labeling and different classes of labeling.
Citation: Kotte Amaranadha Reddy, S Sharief Basha. New classes of reverse super edge magic graphs[J]. AIMS Mathematics, 2022, 7(3): 3590-3602. doi: 10.3934/math.2022198
A reverse edge magic (REM) labeling of a graph $ G(V, E) $ with $ p $ vertices and $ q $ edges is a bijection $ f:V\left(G \right)\cup E\left(G \right)\to \{1, 2, \cdot \cdot \cdot, p+q\} $ such that $ k = f\left(uv \right)-\{f\left(u \right)+f\left(v \right)\} $ is a constant $ k $ for any edge $ uv\in E\left(G \right). $ A REM labeling $ f $ is called reverse super edge magic (RSEM) labeling if $ f(V(G)) = \; \{1, 2, 3, 4, 5, \ldots, v\} $ and $ f(E(G)) = \{v+1, v+2, v+3, v+4, v+5, \ldots, v+e\}. $ In this paper, we find some new classes of RSEM labeling and the investigation of the connection between the RSEM labeling and different classes of labeling.
[1] | A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451–461. doi: 10.4153/CMB-1970-084-1. doi: 10.4153/CMB-1970-084-1 |
[2] | H. Enomoto, A. S. Lladó, T. Nakamigawa, G. Ringel, Super edge-magic graphs, SUT J. Math., 34 (1998), 105–109. |
[3] | R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings, Discrete Math., 231 (2001), 153–168. doi: 10.1016/S0012-365X(00)00314-9. doi: 10.1016/S0012-365X(00)00314-9 |
[4] | R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, Mgical coronations of graphs, Australas. J. Comb., 26 (2002), 199–208. |
[5] | V. Yegnanarayanan, On magic graphs, Utilitas Math., 59 (2001), 181–204. |
[6] | R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, On super edge-magic graphs, Ars Comb., 64 (2002), 81–95. |
[7] | J. C. Bermond, Graceful graphs, radio antennae and French windmills, In: Proceedings one day combinatorics conference, Research notes in mathematics, Pitman, 34 (1979), 18–37. |
[8] | G. Ringel, A. Llado, Another tree conjecture, Bull. Inst. Combin. Appl., 188 (1996), 83–85. |
[9] | K. Kathiresan, Subdivisions of ladders are graceful, Indian J. Pure Appl. Math., 23 (1992), 21–23. |
[10] | R. Balakrishnan, R. Sampathkumar, Decompositions of regular graphs into $k_{n}^{c} \vee 2k_{2}$, Discrete Math., 156 (1996), 19–28. doi: 10.1016/0012-365X(94)00026-F. doi: 10.1016/0012-365X(94)00026-F |
[11] | R. Balakrishna, A. Selvam, V. Yegnanarayanan, Some results on elegantgraphs, Indian J. Pure Appl. Math., 28 (1997), 905–916. |