Research article Special Issues

New classes of reverse super edge magic graphs

  • Received: 23 June 2021 Accepted: 30 November 2021 Published: 03 December 2021
  • MSC : 37E25, 05C38

  • A reverse edge magic (REM) labeling of a graph $ G(V, E) $ with $ p $ vertices and $ q $ edges is a bijection $ f:V\left(G \right)\cup E\left(G \right)\to \{1, 2, \cdot \cdot \cdot, p+q\} $ such that $ k = f\left(uv \right)-\{f\left(u \right)+f\left(v \right)\} $ is a constant $ k $ for any edge $ uv\in E\left(G \right). $ A REM labeling $ f $ is called reverse super edge magic (RSEM) labeling if $ f(V(G)) = \; \{1, 2, 3, 4, 5, \ldots, v\} $ and $ f(E(G)) = \{v+1, v+2, v+3, v+4, v+5, \ldots, v+e\}. $ In this paper, we find some new classes of RSEM labeling and the investigation of the connection between the RSEM labeling and different classes of labeling.

    Citation: Kotte Amaranadha Reddy, S Sharief Basha. New classes of reverse super edge magic graphs[J]. AIMS Mathematics, 2022, 7(3): 3590-3602. doi: 10.3934/math.2022198

    Related Papers:

  • A reverse edge magic (REM) labeling of a graph $ G(V, E) $ with $ p $ vertices and $ q $ edges is a bijection $ f:V\left(G \right)\cup E\left(G \right)\to \{1, 2, \cdot \cdot \cdot, p+q\} $ such that $ k = f\left(uv \right)-\{f\left(u \right)+f\left(v \right)\} $ is a constant $ k $ for any edge $ uv\in E\left(G \right). $ A REM labeling $ f $ is called reverse super edge magic (RSEM) labeling if $ f(V(G)) = \; \{1, 2, 3, 4, 5, \ldots, v\} $ and $ f(E(G)) = \{v+1, v+2, v+3, v+4, v+5, \ldots, v+e\}. $ In this paper, we find some new classes of RSEM labeling and the investigation of the connection between the RSEM labeling and different classes of labeling.



    加载中


    [1] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451–461. doi: 10.4153/CMB-1970-084-1. doi: 10.4153/CMB-1970-084-1
    [2] H. Enomoto, A. S. Lladó, T. Nakamigawa, G. Ringel, Super edge-magic graphs, SUT J. Math., 34 (1998), 105–109.
    [3] R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings, Discrete Math., 231 (2001), 153–168. doi: 10.1016/S0012-365X(00)00314-9. doi: 10.1016/S0012-365X(00)00314-9
    [4] R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, Mgical coronations of graphs, Australas. J. Comb., 26 (2002), 199–208.
    [5] V. Yegnanarayanan, On magic graphs, Utilitas Math., 59 (2001), 181–204.
    [6] R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, On super edge-magic graphs, Ars Comb., 64 (2002), 81–95.
    [7] J. C. Bermond, Graceful graphs, radio antennae and French windmills, In: Proceedings one day combinatorics conference, Research notes in mathematics, Pitman, 34 (1979), 18–37.
    [8] G. Ringel, A. Llado, Another tree conjecture, Bull. Inst. Combin. Appl., 188 (1996), 83–85.
    [9] K. Kathiresan, Subdivisions of ladders are graceful, Indian J. Pure Appl. Math., 23 (1992), 21–23.
    [10] R. Balakrishnan, R. Sampathkumar, Decompositions of regular graphs into $k_{n}^{c} \vee 2k_{2}$, Discrete Math., 156 (1996), 19–28. doi: 10.1016/0012-365X(94)00026-F. doi: 10.1016/0012-365X(94)00026-F
    [11] R. Balakrishna, A. Selvam, V. Yegnanarayanan, Some results on elegantgraphs, Indian J. Pure Appl. Math., 28 (1997), 905–916.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1917) PDF downloads(89) Cited by(2)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog