Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement

  • Received: 28 July 2022 Revised: 09 January 2023 Accepted: 10 April 2023 Published: 06 May 2023
  • This paper introduced a new concrete composites made by quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials (SCMs). The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used (FA). Moreover, silica fume (SF) and nanosilica (nS) were also used. This study utilized the following contents of SCMs used: 5% of nS; 10% of SF; 0, 15, and 25% of FA. During examinations the main mechanical properties of concrete composites, i.e. compressive strength (fcm) and splitting tensile strength (fctm) were assed. The brittleness of these materials was also analysed. Based on the conducted studies, it was found that concrete composite based on quaternary blended cements, of series Mix3, has shown the best results in terms of good strength parameters, whereas the worst mechanical parameters were characterized by concrete of series Mix4. On the other hand, concrete including only SF and nS (Mix2 series) were characterized by the greatest brittleness. It was observed that fcm of concrete composites for series Mix2, Mix3, and Mix4 increase of 41%, 48%, and 31% respectively compared with the concrete without additives, i.e. series Mix1. In addition, fctm also increase of 39%, 47%, and 30%, respectively, for the three series mentioned above, compared with the control concrete. Concrete of series Mix3, with high mechanical properties and demonstrating the features of quasi-plastic material, i.e. having lower brittleness, can be used in concrete and reinforced concrete structures subjected mainly to dynamic and cyclic loads. Therefore, it can be used, in the construction of foundation structures for machines and other types of structures in which the above-mentioned loads are dominant.

    Citation: Grzegorz Ludwik Golewski. Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement[J]. AIMS Materials Science, 2023, 10(3): 390-404. doi: 10.3934/matersci.2023021

    Related Papers:

    [1] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304
    [2] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [3] Shuyang Xue, Meili Li, Junling Ma, Jia Li . Sex-structured wild and sterile mosquito population models with different release strategies. Mathematical Biosciences and Engineering, 2019, 16(3): 1313-1333. doi: 10.3934/mbe.2019064
    [4] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [5] Rinaldo M. Colombo, Mauro Garavello . Optimizing vaccination strategies in an age structured SIR model. Mathematical Biosciences and Engineering, 2020, 17(2): 1074-1089. doi: 10.3934/mbe.2020057
    [6] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [7] Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696
    [8] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [9] Hui Cao, Dongxue Yan, Ao Li . Dynamic analysis of the recurrent epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 5972-5990. doi: 10.3934/mbe.2019299
    [10] Andrea Franceschetti, Andrea Pugliese, Dimitri Breda . Multiple endemic states in age-structured SIR epidemic models. Mathematical Biosciences and Engineering, 2012, 9(3): 577-599. doi: 10.3934/mbe.2012.9.577
  • This paper introduced a new concrete composites made by quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials (SCMs). The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used (FA). Moreover, silica fume (SF) and nanosilica (nS) were also used. This study utilized the following contents of SCMs used: 5% of nS; 10% of SF; 0, 15, and 25% of FA. During examinations the main mechanical properties of concrete composites, i.e. compressive strength (fcm) and splitting tensile strength (fctm) were assed. The brittleness of these materials was also analysed. Based on the conducted studies, it was found that concrete composite based on quaternary blended cements, of series Mix3, has shown the best results in terms of good strength parameters, whereas the worst mechanical parameters were characterized by concrete of series Mix4. On the other hand, concrete including only SF and nS (Mix2 series) were characterized by the greatest brittleness. It was observed that fcm of concrete composites for series Mix2, Mix3, and Mix4 increase of 41%, 48%, and 31% respectively compared with the concrete without additives, i.e. series Mix1. In addition, fctm also increase of 39%, 47%, and 30%, respectively, for the three series mentioned above, compared with the control concrete. Concrete of series Mix3, with high mechanical properties and demonstrating the features of quasi-plastic material, i.e. having lower brittleness, can be used in concrete and reinforced concrete structures subjected mainly to dynamic and cyclic loads. Therefore, it can be used, in the construction of foundation structures for machines and other types of structures in which the above-mentioned loads are dominant.



    Mathematical models of disease spreading date back to the beginning of the twentieth century when Kermack and McKendrick published their famous epidemiological SIR model [1]. Since its invention, many researchers have relied heavily on these basic assumptions and have established more advances models [2,3,4]–only to name a few publications and references therein. Additionally, networks in epidemiology have been recently considered to describe dynamics of disease spreading and spreading patterns [5,6,7,8].

    Special attention has been currently attracted by structured models which take age or spatial structure into account [9,10]. However, transmission rates depend on age structure as well as sex structure in general. For that reason, we develop a simple age- and sex-structured SIR model for short-time prediction because we want to keep modeling as interpretable as possible [12]. Therefore, we structure our population by both sexes and same size age groups.

    Due to current epidemics like COVID-19 [13], we decided to stay with a SIR-typed model because data are suited for this type of models. If we take a closer look at data from Robert-Koch Institute in Germany, the assumption of same size age groups will be acceptable for current data. Theoretically, we have to consider continuous age-structure as presented in [10]. After this short motivational introduction, we can state our contributions in this article.

    Our contributions can be summarized as follows.

    1) We develop a time-continuous age- and sex-structured SIR model for short-term predictions with time-dependent transmission rates between susceptible and infectious people and time-dependent recovery rates.

    2) At first, we show certain properties such as non-negativity and boundedness of solutions.

    3) Additionally, we provide a thorough proof of global existence of solutions in time to our proposed system. We need non-negative and boundedness to conclude global existence and global uniqueness of the solution in time from inductive arguments based on Banach's fixed point theorem. This underlines usefulness of fixed point theorems for arguments regarding existence and uniqueness of solutions in different mathematical areas [11].

    4) Furthermore, we prove monotonicity properties of the global unique solution and investigate analytically that it convergences to a disease-free equilibrium.

    5) Afterwards, we introduce a time-discrete problem formulation which heavily relies on an explicit-implicit formulation of the right-hand-side function. As a consequence, our numerical solution scheme becomes unconditionally stable with respect to chosen time increments. We further show that all properties of the time-continuous formulation transfer to the time-discrete case.

    6) We finally summarize our numerical solution scheme in pseudo-code and one numerical example stresses our theoretical findings.

    Our article is structured as follows. After our motivational introduction of Section 1, we formulate the time-continuous age- and sex-structured SIR model in Section 2. Additionally, we analyze global existence and global uniqueness, non-negativity, boundedness, monotonicity and long-time behavior of the solution of this model. After that, we propose an explicit-implicit numerical solution scheme in Section 3. Here, we show that all properties of our time-continuous model transfer to our time-discrete problem formulation. We present one numerical example to illustrate our theoretical findings in Section 4 and finally, we conclude our article with some remarks on possible future research directions in Section 5.

    The aim of this section is the description and analysis of an age- and sex-structured SIR model. For that purpose, we briefly state our model and its assumptions. At first, we prove global existence based on a modified version of Gr{ö}nwall's Lemma. Afterwards, we provide proofs for non-negativity, boundedness, global uniqueness, monotonicity and long-time behavior of our model's solution.

    To especially state global existence and global uniqueness of the solution of our age- and sex-structured SIR model, we need to introduce some theoretical background material regarding nonlinear ordinary differential equations. Let us first recall Lipschitz continuity of a function on Euclidean spaces.

    Definition 2.1 ([14,Subsection 3.2]). Let d1,d2N. If SRd1, a defined function F:SRd2 is called Lipschitz continuous on S if there exists a non-negative constant L0 such that

    F(x)F(y)Rd2LxyRd1 (2.1)

    holds for all x,yS. Here, denotes a suitable norm on the corresponding Euclidean space.

    Let URd1 be open, let F:URd2. We shall call F locally Lipschitz continuous if for every point x0U there exists a neighborhood V of x0 such that the restriction of F to V is Lipschitz continuous on V.

    We consider an initial-value problem

    {z(t)=G(t,z(t)),z(0)=z0 (2.2)

    where z(t)=(x1(t),,xn(t)) denotes our solution vector. Our vectorial function is represented by G(t,z(t))=(g1(t,z(t)),,gn(t,z(t))) and z0Rn are our given initial conditions. To conclude global existence, we can apply the following theorem that is a direct consequence of Gr{ö}nwall's lemma.

    Theorem 2.2 ([14,Theorem 4.2.1]). If G:[0,)×RnRn is locally Lipschitz continuous and if there exist non-negative real constants B and K such that

    G(t,z(t))RnKz(t)Rn+B (2.3)

    holds for all z(t)Rn, then the solution of the initial value problem (2.2) exists for all time tR and moreover, it holds

    z(t)Rnz0Rnexp(K|t|)+BK(exp(K|t|)1) (2.4)

    for all tR.

    Finally, we need Banach's fixed point theorem to derive global uniqueness.

    Theorem 2.3 ([15,Theorem V.18]). Let (X,ϱ) be a complete metric space with the metric mapping ϱ:X×X[0,). Let T:XX be a strict contraction, i.e. there exists a constant K[0,1) such that ϱ(Tx,Ty)Kϱ(x,y) holds for all x,yX. Then the map T has a unique fixed point.

    At first, we define the supremum norm of a continuous function f:[0,)R. It is given by

    f:=sup

    An equivalent definition can be given for continuous functions on intervals \left[a, b \right] . Let us now state the model's assumptions [10,16,17]:

    1) The population size N is fixed over time t , i.e. N \left(t \right) = N for all t \in \left[0, \infty \right) ;

    2) We divide the population into three homogeneous subetaoups, namely susceptible people (S), infectious people (I) and recovered people (R). We can clearly assign every individual to exactly one subetaoup. Hence, we obtain

    \begin{equation} N = S \left( t \right) + I \left( t \right) + R \left( t \right) \end{equation} (2.5)

    for all t \in \left[0, \infty \right) ;

    3) We further distinguish our subetaoups. Let N_{a} \in \mathbb{N} be the number of age groups and let f and m be the subscripts for female and male persons respectively. Let k \in \left\{ 1, \ldots, N_{a} \right\} be arbitrary. We denote the k -th female susceptible subetaoup by S_{f, k} and the k -th male susceptible subetaoup by S_{m, k} . Consequently, it is clear how we denote the infectious and recovered subetaoups;

    4) Additionally, no births and deaths occur;

    5) The time-varying transmission rates \beta_{S_{m, j}, I_{s, k}} \colon \left[0, \infty \right) \longrightarrow \left(0, \infty \right) are Lipschitz continuous and continuously differentiable for fixed j \in \left\{ 1, \ldots, N_{a} \right\} , arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} and arbitrary s \in \left\{ f, m \right\} . In addition to that, there exists a positive constant M_{\beta} > 0 such that \lVert \beta_{S_{m, j}, I_{s, k}} \rVert_{\infty} \leq M_{\beta} for all t \geq 0 , arbitrary s \in \left\{ f, m \right\} and arbitrary j, k \in \left\{ 1, \ldots, N_{a} \right\} ;

    6) The time-varying recovery rates \gamma_{I_{s, k}} \colon \left[0, \infty \right) \longrightarrow \left(0, \infty \right) are Lipschitz continuous and continuously differentiable for arbitrary s \in \left\{ f, m \right\} and arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} . Additionally, there are positive constants M_{\gamma} > 0 and m_{\gamma} > 0 such that \lVert \gamma_{I_{s, k}} \rVert_{\infty} \leq M_{\gamma} and \gamma_{I_{s, k}} \left(t \right) \geq m_{\gamma} for all t \geq 0 , arbitrary s \in \left\{ f, m \right\} and arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} .

    For abbreviation, we write g^{\prime} \left(t \right) : = \dfrac{ \text{d} g \left(t \right)}{ \text{d}t} for the first derivative of a differentiable function g at time t . Our equations of the time-continuous age- and sex-structured SIR model read

    \begin{equation} \left\{ \begin{aligned} S^{\prime}_{f, j} \left( t \right) & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{f, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{f, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\}, \\ S^{\prime}_{m, j} \left( t \right) & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{m, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{m, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\}, \\ I^{\prime}_{f, j} \left( t \right) & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{f, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{f, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\} - \gamma_{I_{f, j}} \left( t \right) \cdot I_{f, j} \left( t \right), \\ I^{\prime}_{m, j} \left( t \right) & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{m, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{m, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\} - \gamma_{I_{m, j}} \left( t \right) \cdot I_{m, j} \left( t \right), \\ R^{\prime}_{f, j} \left( t \right) & = \gamma_{I_{f, j}} \left( t \right) \cdot I_{f, j} \left( t \right), \\ R^{\prime}_{m, j} \left( t \right) & = \gamma_{I_{m, j}} \left( t \right) \cdot I_{m, j} \left( t \right) \end{aligned} \right. \end{equation} (2.6)

    with susceptible initial conditions S_{s, j} \left(0 \right) = S_{1, s, j} > 0 , infectious initial conditions I_{s, j} \left(0 \right) = I_{1, s, j} \geq 0 and recovered initial conditions R_{s, j} \left(0 \right) = R_{1, s, j} \geq 0 for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} . At least one initial condition of the infectious subetaoups should be positive. Obviously, it holds

    \begin{equation*} N^{\prime} \left( t \right) = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{\prime}_{f, j} \left( t \right) + S^{\prime}_{m, j} \left( t \right) + I^{\prime}_{f, j} \left( t \right) + I^{\prime}_{m, j} \left( t \right) + R^{\prime}_{f, j} \left( t \right) + R^{\prime}_{m, j} \left( t \right) \right\} = 0 \end{equation*}

    such that population size is preserved for all t \geq 0 .

    We examine non-negativity and boundedness of (2.6).

    Lemma 2.4. We obtain

    \begin{equation} \left\{ \begin{aligned} 0 & \leq S_{s, j} \left( t \right) \leq N, \\ 0 & \leq I_{s, j} \left( t \right) \leq N, \\ 0 & \leq R_{s, j} \left( t \right) \leq N \end{aligned} \right. \end{equation} (2.7)

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all t \geq 0 with respect to (2.6).

    Proof. We divide our proof into four parts. Let s \in \left\{ f, m \right\} and j \in \left\{ 1, \ldots, N_{a} \right\} be arbitrary in the following.

    1) We consider

    \begin{eqnarray*} S^{\prime}_{s, j} \left( t \right) & = & - \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \right\} \\ & = & - S_{s, j} \left( t \right) \cdot \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{I_{m, k} \left( t \right)}{N} \right\} \end{eqnarray*}

    since S_{s, j} \left(t \right) is contained in both summands and does not depend on the summation index k . Hence, we can put this term outside our considered sum. Division by S_{s, j} \left(t \right) now yields

    \begin{equation*} \dfrac{S^{\prime}_{s, j} \left( t \right)}{S_{s, j} \left( t \right)} = - \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{I_{m, k} \left( t \right)}{N} \right\} \end{equation*}

    and since we are able to write S^{\prime}_{s, j} \left(t \right) = \dfrac{ \text{d} S_{s, j} \left(t \right)}{ \text{d}t} , we can rewrite this equation by

    \begin{equation*} \dfrac{ \text{d} S_{s, j} \left( t \right)}{S_{s, j} \left( t \right)} = - \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{I_{m, k} \left( t \right)}{N} \right\} \, \text{d}t \end{equation*}

    through separation of variables. By integration on the respective time interval \left[0, t \right] , we observe that

    \begin{equation*} \text{ln} \left( \dfrac{S_{s, j} \left( t \right)}{S_{1, s, j}} \right) = - \int\limits_{0}^{t} \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( \tau \right) \cdot \dfrac{I_{f, k} \left( \tau \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( \tau \right) \cdot \dfrac{I_{m, k} \left( \tau \right)}{N} \right\} \, \text{d}\tau \end{equation*}

    holds. We finally obtain

    \begin{equation*} S_{s, j} \left( t \right) = S_{1, s, j} \cdot \text{exp} \left( - \int\limits_{0}^{t} \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( \tau \right) \cdot \dfrac{I_{f, k} \left( \tau \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( \tau \right) \cdot \dfrac{I_{m, k} \left( \tau \right)}{N} \right\} \, \text{d}\tau \right). \end{equation*}

    Hence, it holds S_{s, j} \left(t \right) > 0 for all t \geq 0 by our approach of separation of variables. This procedure is feasible because our initial conditions for susceptible people are positive.

    2) We examine

    \begin{equation*} \begin{aligned} I^{\prime}_{s, j} \left( t \right) & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\} \\ & \, \, - \gamma_{I_{s, j}} \left( t \right) \cdot I_{s, j} \left( t \right), \\ \end{aligned} \end{equation*}

    under the initial condition I_{s, j} \left(0 \right) = I_{1, s, j} \geq 0 for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} . Let us additionally assume that I_{s, k} \left(0 \right) = I_{1, s, k} \geq 0 for arbitrary s \in \left\{ f, m \right\} and arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} with k \not = j . At least one initial condition I_{1, \widetilde{s}, \widetilde{j}} should be positive. This implies

    \begin{eqnarray*} I^{\prime}_{s, j} \left( 0 \right) & = & \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{s, j}, I_{f, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( T \right) \cdot I_{f, k} \left( 0 \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{m, k} \left( 0 \right)}{N} \biggr\} - \gamma_{I_{s, j}} \left( 0 \right) \cdot \underbrace{I_{s, j} \left( 0 \right)}_{ = 0} \\ & = & \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{s, j}, I_{f, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{f, k} \left( 0 \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{m, k} \left( 0 \right)}{N} \biggr\} \\ & \geq & \beta_{S_{s, j}, I_{\widetilde{s}, \widetilde{j}}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{\widetilde{s}, \widetilde{j}} \left( 0 \right)}{N} \\ & \gt & 0 \end{eqnarray*}

    for all derivatives of initial conditions for infectious subetaoups where the initial conditions are zero at time t = 0 since all S_{s, j} \left(0 \right) > 0 by assumption and all I_{s, k} \left(0 \right) \geq 0 with at least one positive function I_{\widetilde{s}, \widetilde{j}} \left(0 \right) > 0 by assumption. Hence, there exists a time T_{1} > 0 such that I_{s, j} \left(T_{1} \right) > 0 for all s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} . Additionally, it holds I_{s, j} \left(t \right) \geq 0 for all t \in \left[0, T_{1} \right] for all s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} .

    Now, we interpret T_{1} > 0 as our new starting point for our argument. We have to distinguish two cases.

    Case 1: Let T_{2} > T_{1} and let I_{s_{1}, j_{1}} \left(T_{2} \right) = 0 be one function of an infectious subetaoup which is non-negative for all t \in \left[0, T_{2} \right] . This is feasible due to continuity of these functions. Let there be at least one function of infectious subetaoups which is positive at t = T_{2} . As proven in the previous inequality, this implies I_{s_{1}, j_{1}}^{\prime} \left(T_{2} \right) > 0 . However, this yields the existence of a positive constant \delta > 0 such that I_{s_{1}, j_{1}} \left(t \right) < 0 for all t \in \left(T_{2} - \delta, T_{2} \right) by continuity. This contradicts our assumption. Hence, all functions of infectious subetaoups stay non-negative - even positive - in this case. By induction, this even holds on future time subintervals.

    Case 2: Let T_{2} > T_{1} and let I_{s, j} \left(T_{2} \right) = 0 for all s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} . This implies the status of disease-free equilibrium for all future time points.

    Hence, (2.6) preserves non-negativity with respect to all infectious subetaoups.

    3) By our second property and integration of

    R^{\prime}_{s, j} \left( t \right) = \gamma_{I_{s, j}} \left( t \right) \cdot I_{s, j} \left( t \right)

    on the time interval \left[0, t \right] , we obtain

    \begin{equation*} R_{s, j} \left( t \right) = R_{1, s, j} + \int\limits_{0}^{t} \gamma_{I_{s, j}} \left( \tau \right) \cdot I_{s, j} \left( \tau \right) \, \text{d}\tau. \end{equation*}

    It yields full non-negativity preservation of our non-linear ordinary differential equation system (2.6).

    4) Our upper bound is a direct consequence of

    \begin{equation*} N^{\prime} \left( t \right) = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{\prime}_{f, j} \left( t \right) + S^{\prime}_{m, j} \left( t \right) + I^{\prime}_{f, j} \left( t \right) + I^{\prime}_{m, j} \left( t \right) + R^{\prime}_{f, j} \left( t \right) + R^{\prime}_{m, j} \left( t \right) \right\} = 0 \end{equation*}

    for all t \geq 0 and our proof is complete.

    We now prove a global existence theorem of (2.6) based on Theorem 2.2.

    Theorem 2.5. The non-linear first order ordinary differential equation system (2.6) has at least one global solution, i.e. these possible solutions exist for all t \geq 0 .

    Proof. We define the six vectors

    \begin{eqnarray*} S_{f} \left( t \right) & = & \left( S_{f, 1} \left( t \right), \ldots, S_{f, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ S_{m} \left( t \right) & = & \left( S_{m, 1} \left( t \right), \ldots, S_{m, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ I_{f} \left( t \right) & = & \left( I_{f, 1} \left( t \right), \ldots, I_{f, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ I_{m} \left( t \right) & = & \left( I_{m, 1} \left( t \right), \ldots, I_{m, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ R_{f} \left( t \right) & = & \left( R_{f, 1} \left( t \right), \ldots, R_{f, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ R_{m} \left( t \right) & = & \left( R_{m, 1} \left( t \right), \ldots, R_{m, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}} \end{eqnarray*}

    which build our solution vector

    \begin{equation*} \mathbf{z} \left( t \right) = \begin{pmatrix} S_{f} \left( t \right) \\ S_{m} \left( t \right) \\ I_{f} \left( t \right) \\ I_{m} \left( t \right) \\ R_{f} \left( t \right) \\ R_{m} \left( t \right) \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}}. \end{equation*}

    Now, we define \mathbf{G} \colon \left[0, \infty \right) \times \mathbb{R}^{6 \cdot N_{a}} \longrightarrow \mathbb{R}^{N_{a}} by (2.6) in a straightforward manner. By applying maximum norms, triangle inequalities, non-negativity and boundedness by Lemma 2.4, we obtain

    \begin{eqnarray*} \lVert S^{\prime}_{f, j} \left( t \right) \rVert_{\infty} & \leq & 2 \cdot N_{a} \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert S^{\prime}_{m, j} \left( t \right) \rVert_{\infty} & \leq & 2 \cdot N_{a} \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert I^{\prime}_{f, j} \left( t \right) \rVert_{\infty} & \leq & \left( 2 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert I^{\prime}_{m, j} \left( t \right) \rVert_{\infty} & \leq & \left( 2 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert R^{\prime}_{f, j} \left( t \right) \rVert_{\infty} & \leq & \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert R^{\prime}_{m, j} \left( t \right) \rVert_{\infty} & \leq & \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty} \end{eqnarray*}

    for all j \in \left\{ 1, \ldots, N_{a} \right\} and this yields

    \begin{equation*} \lVert \mathbf{G} \left( t, \mathbf{z} \left( t \right) \right) \rVert_{\infty} \leq \left( 2 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}. \end{equation*}

    Hence, Theorem 2.2 implies global existence of the system's possible solutions in time.

    Now, we are able to prove global uniqueness of our time-continuous problem formulation (2.6).

    Theorem 2.6. The non-linear first order ordinary differential equation system (2.6) has exactly one global unique solution in time.

    Proof. 1) At first, we need one inequality for our proof. Let x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R} be arbitrary. By the triangle inequality, we obtain

    \begin{eqnarray*} \left| x_{1} \cdot y_{1} - x_{2} \cdot y_{2} \right| & = & \left| x_{1} \cdot y_{1} - x_{2} \cdot y _{1} + x_{2} \cdot y_{1} - x_{2} \cdot y_{2} \right| \\ & \leq & \left| x_{1} \cdot y_{1} - x_{2} \cdot y _{1} \right| + \left| x_{2} \cdot y_{1} - x_{2} \cdot y_{2} \right| \\ & = & \left| y_{1} \right| \cdot \left| x_{1} - x_{2} \right| + \left| x_{2} \right| \cdot \left| y_{1} - y_{2} \right|. \end{eqnarray*}

    2) Let

    \mathbf{z} \left( t \right) = \begin{pmatrix} S_{f} \left( t \right) \\ S_{m} \left( t \right) \\ I_{f} \left( t \right) \\ I_{m} \left( t \right) \\ R_{f} \left( t \right) \\ R_{m} \left( t \right) \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}} \, \, \text{and} \, \, \mathbf{\widetilde{z}} \left( t \right) = \begin{pmatrix} \widetilde{S_{f}} \left( t \right) \\ \widetilde{S_{m}} \left( t \right) \\ \widetilde{I_{f}} \left( t \right) \\ \widetilde{I_{m}} \left( t \right) \\ \widetilde{R_{f}} \left( t \right) \\ \widetilde{R_{m}} \left( t \right) \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}}

    be two solutions of our initial value problem (2.6) with same time-varying coefficients and same initial value conditions. Let us consider

    \begin{eqnarray*} \widetilde{S_{s, j}} \left( \tau \right) - S_{s, j} \left( \tau \right) & = & \underbrace{\widetilde{S_{s, j}} \left( 0 \right) - S_{s, j} \left( 0 \right)}_{ = 0} - \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left\{ \dfrac{\beta_{S_{s, j}, I_{f, k}} \left( t \right)}{N} \cdot \left( \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right) \right) \right\} \, \text{d}t \\ & & \, \, + \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left\{ \dfrac{\beta_{S_{s, j}, I_{m, k}} \left( t \right)}{N} \cdot \left( \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right) \right) \right\} \, \text{d}t \end{eqnarray*}

    for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} . Application of the triangle inequality and assumptions on our time-varying coefficients yields

    \begin{eqnarray*} \left| \widetilde{S_{s, j}} \left( \tau \right) - S_{s, j} \left( \tau \right) \right| & \leq & \dfrac{M_{\beta}}{N} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left| \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) + S_{s, j} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right) \right| \, \text{d}t \\ & + & \dfrac{M_{\beta}}{N} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left| \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) + S_{s, j} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right) \right| \, \text{d}t. \end{eqnarray*}

    Since all functions are bounded above by the population size N, we obtain

    \begin{eqnarray*} \left| \widetilde{S_{s, j}} \left( \tau \right) - S_{s, j} \left( \tau \right) \right| & \leq & M_{\beta} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left\{ 2 \cdot \left| \widetilde{S_{s, j}} \left( t \right) - S_{s, j} \left( t \right) \right| + \left| \widetilde{I_{f, k}} \left( t \right) - I_{f, k} \left( t \right) \right| + \left| \widetilde{I_{m, k}} \left( t \right) - I_{m, k} \left( t \right) \right| \right\} \, \text{d}t \\ & \leq & 4 \cdot M_{\beta} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \, \text{d}t \\ & \leq & 4 \cdot M_{\beta} \cdot N_{a} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \end{eqnarray*}

    by application of our inequality from the first step of this proof.

    3) Let us now consider

    \begin{eqnarray*} \widetilde{I_{s, j}}^{\prime} \left( t \right) - I_{s, j}^{\prime} \left( t \right) & = & \left\{ - \widetilde{S_{s, j}}^{\prime} \left( t \right) - \gamma_{I_{s, j}} \left( t \right) \cdot \widetilde{I_{s, j}} \left( t \right) \right\} - \left\{ - S_{s, j}^{\prime} \left( t \right) - \gamma_{I_{s, j}} \left( t \right) \cdot I_{s, j} \left( t \right) \right\} \\ & = & \left( S_{s, j}^{\prime} \left( t \right) - \widetilde{S_{s, j}}^{\prime} \left( t \right) \right) + \gamma_{I_{s, j}} \left( t \right) \cdot \left( I_{s, j} \left( t \right) - \widetilde{I_{s, j}} \left( t \right( \right). \end{eqnarray*}

    By integration on the time interval \left[0, \tau \right] , we obtain

    \widetilde{I_{s, j}} \left( \tau \right) - I_{s, j} \left( \tau \right) = S_{s, j} \left( \tau \right) - \widetilde{S_{s, j}} \left( \tau \right) + \int\limits_{0}^{\tau} \gamma_{I_{s, j}} \left( t \right) \cdot \left( I_{s, j} \left( t \right) - \widetilde{I_{s, j}} \left( t \right) \right) \, \text{d} t.

    Application of the triangle inequality and the second part of this proof yields

    \begin{eqnarray*} \left| \widetilde{I_{s, j}} \left( \tau \right) - I_{s, j} \left( \tau \right) \right| & \leq & \left| S_{s, j} \left( \tau \right) - \widetilde{S_{s, j}} \left( \tau \right) \right| + \left| \int\limits_{0}^{\tau} \gamma_{I_{s, j}} \left( t \right) \cdot \left( I_{s, j} \left( t \right) - \widetilde{I_{s, j}} \left( t \right) \right) \, \text{d}t \right| \\ & \leq & 4 \cdot M_{\beta} \cdot N_{a} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} + M_{\gamma} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \\ & \leq & \left( 4 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}. \end{eqnarray*}

    4) Furthermore, it holds

    \widetilde{R_{s, j}} \left( \tau \right) - R_{s, j} \left( \tau \right) = \int\limits_{0}^{\tau} \gamma_{I_{s, j}} \left( t \right) \cdot \left( \widetilde{I_{s, j}} \left( t \right) - I_{s, j} \left( t \right) \right) \, \text{d} t.

    We obtain

    \left| \widetilde{R_{s, j}} \left( \tau \right) - R_{s, j} \left( \tau \right) \right| \leq M_{\gamma} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}.

    5) Combining the previous steps, we conclude

    \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \leq 4 \cdot \left( N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}

    on the time interval \left[0, \tau \right] . Choose \tau : = \dfrac{1}{8 \cdot \left(N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\}} . This implies

    \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \leq \dfrac{4 \cdot \left( N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\}}{8 \cdot \left( N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\}} \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} = \dfrac{1}{2} \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}

    and hence, the solution is unique on the time interval \left[0, \tau \right] by Banach's fixed point theorem. Inductively, all previous steps hold on following time intervals \left[k \cdot \tau, \left(k + 1 \right) \right] with arbitrary k \in \mathbb{N} and initial conditions at time point t = k \cdot \tau . Therefore, we conclude that the solution is unique for all t \geq 0 which proves our assertion.

    We conclude our analysis of our time-continuous problem formulation (2.6) by an investigation of monotonicity and long-time behavior.

    Theorem 2.7. We obtain the following properties for arbitrary s \in \left\{ f, m \right\} and for all j \in \left\{ 1, \ldots, N_{a} \right\} :

    1) S_{s, j} is monotonically decreasing and there exists a number S^{\star}_{s, j} \geq 0 such that \lim\limits_{t \to \infty} S_{s, j} \left(t \right) = S^{\star}_{s, j} holds. Additionally, we obtain S^{\star}_{s, j} > 0 ;

    2) R_{s, j} is monotonically increasing and there exists a number R^{\star}_{s, j} \geq 0 such that \lim\limits_{t \to \infty} R_{s, j} \left(t \right) = R^{\star}_{s, j} ;

    3) I_{s, j} is Lebesgue-integrable on \left[0, \infty \right) and we get \lim\limits_{t \to \infty} I_{s, j} \left(t \right) = 0 ;

    4) Our system (2.6) always converges to a disease-free equilibrium

    for all solution functions of (2.6).

    Proof. We divide our proof in four parts. Let s \in \left\{ f, m \right\} and j \in \left\{ 1, \ldots, N_{a} \right\} be arbitrary.

    1) Since 0 \leq S_{s, j} \left(t \right) \leq N and 0 \leq I_{s, j} \left(t \right) \leq N hold for all t \geq 0 by Lemma 2.4, we obtain S^{\prime}_{s, j} \left(t \right) \leq 0 for all t \geq 0 . By separation of variables, we know that

    \begin{equation*} S_{s, j} \left( t \right) = S_{1, s, j} \cdot \text{exp} \left( - \int\limits_{0}^{t} \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( \tau \right) \cdot \dfrac{I_{f, k} \left( \tau \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( \tau \right) \cdot \dfrac{I_{m, k} \left( \tau \right)}{N} \right\} \, \text{d}\tau \right) \end{equation*}

    is valid and this implies

    \begin{equation*} S_{s, j} \left( t \right) \geq S_{1, s, j} \cdot \text{exp} \left( - 2 \cdot M_{\beta} \cdot N_{a} \cdot t \right) \gt 0. \end{equation*}

    Since S_{s, j} is monotonically decreasing, bounded below by zero and

    \begin{equation*} S_{s, j} \left( t \right) \geq S_{1, s, j} \cdot \text{exp} \left( - 2 \cdot M_{\beta} \cdot N_{a} \cdot t \right) \gt 0, \end{equation*}

    there exists a positive real number S^{\star}_{s, j} such that we obtain the limit \lim\limits_{t \to \infty} S_{s, j} \left(t \right) = S^{\star}_{s, j} .

    2) By considering R^{\prime}_{s, j} \left(t \right) = \gamma_{I_{s, j}} \left(t \right) \cdot I_{s, j} \left(t \right) \geq 0 from Lemma 2.4, we conclude that R_{s, j} is monotonically increasing. Since R_{s, j} is further bounded above by N according to Lemma 2.4, there exists a positive real number R^{\star}_{s, j} such that \lim\limits_{t \to \infty} R_{s, j} \left(t \right) = R^{\star}_{s, j} .

    3) We have R^{\prime}_{s, j} \left(t \right) = \gamma_{I_{s, j}} \left(t \right) \cdot I_{s, j} \left(t \right) according to our non-linear differential equation system (2.6). Integration on \left[0, \infty \right) yields

    \begin{eqnarray*} R^{\star}_{s, j} - R_{1, s, j} & = & \int\limits_{0}^{\infty} \gamma_{I_{s, j}} \left( \tau \right) \cdot I_{s, j} \left( \tau \right) \, \text{d}\tau \\ & \geq & m_{\gamma} \cdot \int\limits_{0}^{\infty} I_{s, j} \left( \tau \right) \, \text{d}\tau. \end{eqnarray*}

    This yields

    \begin{eqnarray*} \int\limits_{0}^{\infty} \left| I_{s, j} \left( \tau \right) \right| \, \text{d}\tau & = & \int\limits_{0}^{\infty} I_{s, j} \left( \tau \right) \, \text{d}\tau \\ & \leq & \dfrac{R^{\star}_{s, j} - R_{1, s, j}}{m_{\gamma}} \\ & \leq & \dfrac{N}{{m_{\gamma}}} \end{eqnarray*}

    and hence, I_{s, j} is Lebesgue-integrable on \left[0, \infty \right) . This shows \lim\limits_{t \to \infty} I_{s, j} \left(t \right) = 0 .

    4) Remember the notation introduced at the beginning of the proof of Theorem 2.5. By our three aforementioned properties, we obtain the limiting vector

    \begin{eqnarray*} \mathbf{z}^{\star} & = & \lim\limits_{t \to \infty} \mathbf{z} \left( t \right) \\ & = & \lim\limits_{t \to \infty} \begin{pmatrix} S_{f} \left( t \right) \\ S_{m} \left( t \right) \\ I_{f} \left( t \right) \\ I_{m} \left( t \right) \\ R_{f} \left( t \right) \\ R_{m} \left( t \right) \end{pmatrix} \\ & = & \begin{pmatrix} \lim\limits_{t \to \infty} S_{f} \left( t \right) \\ \lim\limits_{t \to \infty} S_{m} \left( t \right) \\ \lim\limits_{t \to \infty} I_{f} \left( t \right) \\ \lim\limits_{t \to \infty} I_{m} \left( t \right) \\ \lim\limits_{t \to \infty} R_{f} \left( t \right) \\ \lim\limits_{t \to \infty} R_{m} \left( t \right) \end{pmatrix} \\ & = & \begin{pmatrix} S^{\star}_{f} \\ S^{\star}_{m} \\ \mathbf{0}_{\mathbb{R}^{N_{a}}} \\ \mathbf{0}_{\mathbb{R}^{N_{a}}} \\ I^{\star}_{f} \\ I^{\star}_{m} \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}} \end{eqnarray*}

    and this vector represents the disease-free equilibrium. Hence, our non-linear differential equation system converges to the disease-free equilibrium. This finishes our proof.

    Here, we develop an explicit-implicit time-discrete variant of our time-continuous age- and sex-structured SIR model. We organize this section similar to the previous one. Our constructive goal in this section is to present a numerical solution scheme that captures as many properties of its continuous analogue as possible.

    Let us assume that our time interval \left[0, T \right] can be divided by a strictly increasing sequence \left\{ t_{p} \right\}_{p = 1}^{M} for M \in \mathbb{N} with t_{1} = 0 and t_{M} = T . To distinguish continuous and time-discrete solutions, all time-discrete functions are denoted by S^{ \text{num}}_{s, j} \left(t_{p} \right) for example. We additionally assume that time-continuous and time-discrete time-varying transmission rates and recovery rates coincide for all times.

    Here, we state our explicit-implicit time-discrete problem formulation

    \begin{equation} \left\{ \begin{aligned} \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) - S^{ \text{num}}_{f, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\}, \\ \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) - S^{ \text{num}}_{m, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\}, \\ \dfrac{I^{ \text{num}}_{f, j} \left( t_{p + 1} \right) - I^{ \text{num}}_{f, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad + \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} - \gamma_{I^{ \text{num}}_{f, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, j} \left( t_{p + 1} \right), \\ \dfrac{I^{ \text{num}}_{m, j} \left( t_{p + 1} \right) - I^{ \text{num}}_{m, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad + \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} - \gamma_{I^{ \text{num}}_{m, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, j} \left( t_{p + 1} \right), \\ \dfrac{R^{ \text{num}}_{f, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{f, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \gamma_{I^{ \text{num}}_{f, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, j} \left( t_{p + 1} \right), \\ \dfrac{R^{ \text{num}}_{m, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{m, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \gamma_{I^{ \text{num}}_{m, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \end{aligned} \right. \end{equation} (3.1)

    of the time-continuous SIR model (2.6) for all p \in \left\{ 1, \ldots, M - 1 \right\} and for all subscripts of age groups j \in \left\{ 1, \ldots, N_{a} \right\} . Our initial conditions read

    \begin{equation*} S^{ \text{num}}_{s, j} \left( t_{1} \right) \gt 0 \, \, \text{and} \, \, I^{ \text{num}}_{s, j} \left( t_{1} \right) \geq 0 \, \, \text{and} \, \, R^{ \text{num}}_{s, j} \left( t_{1} \right) \geq 0 \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} with at least one initial condition of infectious subetaoups to be positive. For abbreviation, we write in short \Delta_{p + 1} = \left(t_{p + 1} - t_{p} \right) for all p \in \left\{ 1, \ldots, M - 1 \right\} in the following. This explicit-implicit time-discrete problem formulation obviously fulfills

    \begin{equation} \begin{aligned} N & = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) + S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) + I^{ \text{num}}_{f, j} \left( t_{p + 1} \right) + I^{ \text{num}}_{m , j} \left( t_{p + 1} \right) \right. \\ & \left. \quad + R^{ \text{num}}_{f, j} \left( t_{p + 1} \right) + R^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \right\} \\ & = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{ \text{num}}_{f, j} \left( t_{p} \right) + S^{ \text{num}}_{m, j} \left( t_{p} \right) + I^{ \text{num}}_{f, j} \left( t_{p} \right) + I^{ \text{num}}_{m , j} \left( t_{p} \right) + R^{ \text{num}}_{f, j} \left( t_{p} \right) + R^{ \text{num}}_{m, j} \left( t_{p} \right) \right\} \end{aligned} \end{equation} (3.2)

    for all p \in \left\{ 1, \ldots, M - 1 \right\} .

    Let us proceed with unique solvability of our numerical scheme (3.1).

    1) We observe from

    \begin{equation*} \begin{aligned} \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - S^{ \text{num}}_{s, j} \left( t_{p} \right)}{\Delta_{p + 1}} & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} \end{aligned} \end{equation*}

    that

    \begin{equation} S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = \dfrac{S^{ \text{num}}_{s, j} \left( t_{p} \right)}{1 + \dfrac{\Delta_{p + 1}}{N} \cdot S^{sum, num}_{s, j} \left( t_{p + 1} \right)} \end{equation} (3.3)

    holds for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} . Here, the sum in the denominator is given by

    \begin{equation*} \begin{aligned} S^{ \text{sum, num}}_{s, j} \left( t_{p + 1} \right) & = \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right) \right. \\ & \left. \quad + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right) \right\}. \end{aligned} \end{equation*}

    2) We see from

    \begin{equation*} \begin{aligned} \dfrac{I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - I^{ \text{num}}_{s, j} \left( t_{p} \right)}{\Delta_{p + 1}} & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} \\ & \quad - \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{aligned} \end{equation*}

    that

    \begin{equation} \begin{split} I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) & = \dfrac{I_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}^{ \text{num}}} \left( t_{p + 1} \right)} \\ & \, \, + \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}^{ \text{num}}} \left( t_{p + 1} \right)} \end{split} \end{equation} (3.4)

    holds for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} .

    3) We conclude from

    \begin{equation*} \dfrac{R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{s, j} \left( t_{p} \right)}{\Delta_{p + 1}} = \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{equation*}

    that

    \begin{equation} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = R^{ \text{num}}_{s, j} \left( t_{p} \right) + \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{equation} (3.5)

    holds for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} .

    4) Hence, all our computations demonstrate that our numerical solution scheme (3.1) is uniquely solvable. We even infer that, in contrast to typical explicit Euler-time stepping schemes, it is unconditionally stable and we avoid non-linearities as in implicit Euler-time stepping schemes. We summarize our computations and our observations in the following theorem.

    Theorem 3.1. Our numerical solution scheme (3.1) is uniquely solvable for all time steps. Additionally, it is also unconditionally stable.

    Proof. Follow the above computations in Subsection 3.2.

    Let us first remark that our initial conditions are non-negative. By induction, it follows that

    \begin{equation*} S^{ \text{num}}_{s, j} \left( t_{p} \right) \geq 0 \, \, , \, \, I^{ \text{num}}_{s, j} \left( t_{p} \right) \geq 0 \, \, \text{and} \, \, R^{ \text{num}}_{s, j} \left( t_{p} \right) \geq 0 \end{equation*}

    hold from (3.3) - (3.5) for all s \in \left\{ f, m \right\} , all j \in \left\{ 1, \ldots, N_{a} \right\} and all p \in \left\{ 1, \ldots, M \right\} . Boundedness is a consequence of (3.2). Thus, we can state the following lemma.

    Lemma 3.2. We obtain

    \begin{equation*} 0 \leq S^{ \text{num}}_{s, j} \left( t_{p} \right) \leq N \, \, , \, \, 0 \leq I^{ \text{num}}_{s, j} \left( t_{p} \right) \leq N \, \, \text{and} \, \, 0 \leq R^{ \text{num}}_{s, j} \left( t_{p} \right) \leq N \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M \right\} .

    We continue this section with our theorem on monotonicity and long-time behavior of the solution of our explicit-implicit numerical scheme (3.1).

    Theorem 3.3. We have the following properties:

    1) The sequence \left\{ S^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically decreasing and there exists a non-negative real number S^{\star, \text{num}} such that \lim\limits_{p \to \infty} S^{ \text{num}}_{s, j} \left(t_{p} \right) = S^{\star, \text{num}} ;

    2) The sequence \left\{ R^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically increasing and there exists a non-negative real number R^{\star, \text{num}} such that \lim\limits_{p \to \infty} R^{ \text{num}}_{s, j} \left(t_{p} \right) = R^{\star, \text{num}} ;

    3) The sequence \left\{ I^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} fulfills \lim\limits_{p \to \infty} I^{ \text{num}}_{s, j} \left(t_{p} \right) = I^{\star, \text{num}} = 0

    for arbitrary s \in \left\{ f, m \right\} and for all j \in \left\{ 1, \ldots, N_{a} \right\} .

    Proof. 1) By Lemma 3.2, we know that the sequence \left\{ S^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is bounded. Again by Lemma 3.2 and (3.3) - (3.5), we get

    \begin{equation*} S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = \dfrac{S^{ \text{num}}_{s, j} \left( t_{p} \right)}{1 + \dfrac{\Delta_{p + 1}}{N} \cdot S^{sum, num}_{s, j} \left( t_{p + 1} \right)} \leq S^{ \text{num}}_{s, j} \left( t_{p} \right) \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} . Hence, the sequence \left\{ S^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically decreasing and it thus converges. This implies the existence of a non-negative real number S^{\star, \text{num}} such that \lim\limits_{p \to \infty} S^{ \text{num}}_{s, j} \left(t_{p} \right) = S^{\star, \text{num}} holds.

    2) By Lemma 3.2, we know that the sequence \left\{ R^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is bounded. Again by Lemma 3.2 and (3.3) - (3.5), we conclude

    \begin{equation*} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = R^{ \text{num}}_{s, j} \left( t_{p} \right) + \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \geq R^{ \text{num}}_{s, j} \left( t_{p} \right) \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} . Hence, the sequence \left\{ R^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically increasing and it thus converges. This yields the existence of a non-negative real number R^{\star, \text{num}} such that \lim\limits_{p \to \infty} R^{ \text{num}}_{s, j} \left(t_{p} \right) = R^{\star, \text{num}} holds.

    3) Let us assume the contrary. This implies the existence of a positive real number I^{\star, \text{num}} such that \lim\limits_{p \to \infty} I^{ \text{num}}_{s, j} \left(t_{p} \right) = I^{\star, \text{num}} holds. By (3.4), we then know that all values of the sequence are positive from a certain sequence index. Hence, there exists a positive real number \tilde{I}^{ \text{num, min}} such that I^{ \text{num}}_{s, j} \left(t_{p} \right) \geq \tilde{I}^{ \text{num, min}} . Considering

    \begin{equation*} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{s, j} \left( t_{p} \right) = \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{equation*}

    from (3.5), we obtain

    \begin{eqnarray*} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{s, j} \left( t_{p} \right) & \geq & \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot \tilde{I}^{ \text{num, min}} \\ & \geq & m_{\gamma} \cdot \Delta_{p + 1} \cdot \tilde{I}^{ \text{num, min}} \end{eqnarray*}

    and summation by parts yields

    \begin{equation*} \begin{aligned} R^{\star, \text{num}} - R^{ \text{num}}_{s, j} \left( t_{L} \right) & \geq \lim\limits_{p \to \infty} m_{\gamma} \cdot t_{p + 1} \cdot \tilde{I}^{ \text{num, min}} - m_{\gamma} \cdot t_{L} \cdot \tilde{I}^{ \text{num, min}} \\ & \xrightarrow[p \to \infty]{} \infty \end{aligned} \end{equation*}

    from the mentioned time index L as our summation beginning. However, this contradicts our second property. Hence, \lim\limits_{p \to \infty} I^{ \text{num}}_{s, j} \left(t_{p} \right) = I^{\star, \text{num}} = 0 holds.

    Here, we want to discuss convergence of our proposed numerical scheme (3.1).

    Theorem 3.4. In addition to the assumptions of Subsection 2.2, all solution functions S_{s, j}, I_{s, j}, R_{s, j} \colon \left[0, \infty \right) \longrightarrow \left[0, N \right] are assumed to be continuously differentiable twice with globally bounded first and second derivatives. Additionally, all first derivatives of time-varying transmission rates and time-varying recovery rates are assumed to be globally bounded as well. Let \Delta_{p} \leq 1 for all p \in \mathbb{N} . If \max\limits_{p \in \mathbb{N}} \Delta_{p} \to 0 holds, the discrete solution of the numerical scheme (3.1) converges linearly towards the global unique continuous solution on a considered time interval \left[0, T \right] .

    Proof. Since this proof become relatively technical, we briefly describe our strategy. At first, local errors between continuous and time-discrete solutions are considered. Afterwards, we need to take into account that errors propagate in time. Finally, we investigate cumulation of these errors which finalizes our proof. We adapt ideas from [18] and [19]. In general, we follow [19,Satz 74.1] and modify ideas for explicit Eulerian time-stepping schemes because our scheme is a mixture of explicit-implicit parts.

    1) For investigation of local errors, we assume that

    \left( t_{p}, S_{s, j}^{ \text{num} } \left( t_{p} \right) \right) = \left( t_{p}, S_{s, j} \left( t_{p} \right) \right) \, \, , \, \, \left( t_{p}, I_{s, j}^{ \text{num} } \left( t_{p} \right) \right) = \left( t_{p}, I_{s, j} \left( t_{p} \right) \right) \, \, \text{and} \, \, \left( t_{p}, R_{s, j}^{ \text{num} } \left( t_{p} \right) \right) = \left( t_{p}, R_{s, j} \left( t_{p} \right) \right)

    hold for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} and we consider the time interval \left[t_{p}, t_{p + 1} \right] . Here, we thus only consider one time step and denote solutions by \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} , \widetilde{I_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} and \widetilde{R_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} respectively.

    1.1) It first holds

    \begin{equation*} \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} = S_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \end{equation*}

    and solving this equation for \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} yields

    \begin{eqnarray*} \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & \dfrac{S_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \\ & = & S_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}. \end{eqnarray*}

    We consider \left| S_{s, j} \left(t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . It holds

    \begin{eqnarray*} & & \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| S_{s, j} \left( t_{p + 1} \right) - \left\{ S_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right\} \right|. \end{eqnarray*}

    Zero addition and application of the triangle inequality implies

    \begin{eqnarray*} & & \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & \leq & \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    We define the two terms

    \begin{eqnarray*} I_{a} = \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \end{eqnarray*}

    and

    \begin{eqnarray*} I_{b} & = & \left| - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    For I_{a} , we obtain

    \begin{eqnarray*} I_{a} & = & \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} S_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot S_{s, j}^{\prime} \left( t_{p} \right) \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} S_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \int\limits_{t_{p}}^{t_{p + 1}} S_{s, j}^{\prime} \left( t_{p} \right) \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left\{ S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right) \right\} \, \text{d}\tau \right|. \end{eqnarray*}

    Application of the mean value theorem of calculus yields the existence of \xi_{a} \in \left(t_{p}, t_{p + 1} \right) such that

    S_{s, j}^{\prime \prime} \left( \xi_{a} \right) = \dfrac{S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}}

    holds. This implies

    \begin{eqnarray*} I_{a} & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left\{ S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right) \right\} \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot \dfrac{S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \text{d}\tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot S_{s, j}^{\prime \prime} \left( \xi_{a} \right) \, \text{d}\tau \right| \\ & \leq & \max\limits_{t \in \left[ t_{p}, t_{p + 1} \right]} \left| S_{s, j}^{\prime \prime} \left( t \right) \right| \cdot \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \, \text{d}\tau \right| \leq \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert S_{s, j}^{\prime \prime} \rVert_{\infty}. \end{eqnarray*}

    For I_{b} , we obtain

    \begin{eqnarray*} I_{b} & = & \left| - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & = & \left| \dfrac{- \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right. \\ & & \left. - \Delta_{p + 1}^{2} \cdot \dfrac{\left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    Application of the triangle inequality and rearranging yields

    \begin{eqnarray*} I_{b} & \leq & \left| \dfrac{\Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & & + \left| \Delta_{p + 1}^{2} \cdot \dfrac{\left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    Since

    1 \leq 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}

    is valid, we obtain

    \begin{eqnarray*} I_{b} & \leq & \left| \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\} \right| \\ & & + \Delta_{p + 1}^2 \cdot \left| \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \right|. \end{eqnarray*}

    By the mean value theorem of calculus, there exists \xi_{b} \in \left(t_{p}, t_{p + 1} \right) such that

    \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{b} \right) = \dfrac{\beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    holds. This implies

    \begin{eqnarray*} I_{b} & \leq & \left| \Delta_{p + 1}^{2} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \dfrac{\left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right)}{t_{p + 1} - t_{p}} \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\} \right| \\ & & + \Delta_{p + 1}^{2} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} M_{\beta} \cdot N \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} M_{\beta} \right\} \\ & \leq & \left| \Delta_{p + 1}^{2} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{b} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\} \right| \\ & & + \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot M_{\beta} \cdot N_{a} \cdot N \right\} \cdot \left\{ 2 \cdot M_{\beta} \cdot N_{a} \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \right\}. \end{eqnarray*}

    Here, { \beta ^{\prime}} denotes the vector of all derivatives of time-varying transmission rates. We conclude

    \begin{eqnarray*} \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| & \leq & I_{a} + I_{b} \\ & \leq & \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert S_{s, j}^{\prime \prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot \underbrace{\left\{ \lVert S_{s, j}^{\prime \prime} \rVert_{\infty} + 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \right\}}_{: = C_{s, \text{loc}}} \end{eqnarray*}

    and summarizing our results, this implies

    \begin{equation} \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \leq C_{s, \text{loc}} \cdot \Delta_{p + 1}^{2}. \end{equation} (3.6)

    1.2) From

    \begin{eqnarray*} \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & I_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \\ & & - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)}, \end{eqnarray*}

    we obtain

    \begin{eqnarray*} \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & \dfrac{I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} + \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & = & I_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)}. \end{eqnarray*}

    We consider \left| I_{s, j} \left(t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . It holds

    \begin{eqnarray*} & & \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) + \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Rearranging of these terms and application of the triangle inequality yields

    \begin{eqnarray*} & & \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \left\{ I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right\} \right. \\ & & \left. + \left\{ \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot I_{s, j}^{\prime} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    We define the following three terms

    \begin{eqnarray*} I_{c} & : = & \left| \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot I_{s, j}^{\prime} \left( t_{p} \right) \right|, \\ I_{d} & : = & \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \end{eqnarray*}

    and

    \begin{eqnarray*} I_{e} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    I_{c} can be rewritten as

    I_{c} = \left| \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( \tau \right) \, \text{d} \tau - \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( t_{p} \right) \, \text{d} \tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d} \tau \right|.

    By the mean value theorem of calculus, there exists \xi_{c} \in \left(t_{p}, t_{p + 1} \right) such that

    I_{s, j}^{\prime \prime} \left( \xi_{c} \right) = \dfrac{I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}}

    holds. This implies

    \begin{eqnarray*} I_{c} & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d}\tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot \dfrac{I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot I_{s, j}^{\prime \prime} \left( \xi_{c} \right) \, \text{d}\tau \right| \leq \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert I_{s, j}^{\prime \prime} \rVert_{\infty}. \end{eqnarray*}

    For I_{d} , we obtain

    \begin{eqnarray*} I_{d} & : = & \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & = & \left| \dfrac{\Delta_{p + 1} \cdot I_{s, j} \left( t_{p} \right) \cdot \left\{ \gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right) \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right|. \end{eqnarray*}

    Application of the triangle inequality implies

    \begin{eqnarray*} I_{d} & \leq & \left| \dfrac{\Delta_{p + 1} \cdot I_{s, j} \left( t_{p} \right) \cdot \left\{ \gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right) \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| + \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right| \\ & \leq & \left| \Delta_{p + 1} \cdot I_{s, j} \left( t_{p} \right) \cdot \left\{ \gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right) \right\} \right| + \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right|. \end{eqnarray*}

    By the mean value theorem of calculus, there is \xi_{d} \in \left(t_{p}, t_{p + 1} \right) such that

    \gamma_{I_{s, j}}^{\prime} \left( \xi_{d} \right) = \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    holds. Hence, we conclude

    \begin{eqnarray*} I_{d} & \leq & \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p} \right) \cdot \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \right| + \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right| \\ & \leq & \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p} \right) \cdot \gamma_{I_{s, j}}^{\prime} \left( \xi_{d} \right) \right| + \Delta_{p + 1}^{2} \cdot M_{\gamma}^{2} \cdot N \\ & \leq & \Delta_{p + 1}^{2} \cdot N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot M_{\gamma}^{2} \cdot N. \end{eqnarray*}

    Here, { \gamma ^{\prime}} denotes the vector containing all derivatives of time-varying recovery rates. We consider

    \begin{eqnarray*} I_{e} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    By zero addition, we obtain

    \begin{eqnarray*} I_{e} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Application of the triangle inequality yields

    \begin{eqnarray*} I_{e} & \leq & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    We define the following three terms

    \begin{eqnarray*} I_{e, 1} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right|, \\ I_{e, 2} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \end{eqnarray*}

    and

    \begin{eqnarray*} I_{e, 3} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Considering I_{e, 1} , there exists \xi_{e, 1} \in \left(t_{p}, t_{p + 1} \right) such that

    S_{s, j}^{\prime} \left( \xi_{e, 1} \right) = \dfrac{S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    holds due to the mean value theorem of calculus. Hence, we obtain

    \begin{eqnarray*} I_{e, 1} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| - \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right)}{t_{p} - t_{p + 1}} \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot S_{s, j}^{\prime} \left( \xi_{e, 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty}. \end{eqnarray*}

    By the mean value theorem of calculus, there exists \xi_{e, 2} \in \left(t_{p}, t_{p + 1} \right) such that

    \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{e, 2} \right) = \dfrac{\beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    is valid. Application of the triangle inequality yields

    \begin{eqnarray*} I_{e, 2} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| - \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \dfrac{\left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right)}{t_{p + 1} - t_{p}} \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{e, 2} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty}. \end{eqnarray*}

    Now, we consider

    \begin{eqnarray*} I_{e, 3} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    By application of the triangle inequality, we obtain

    \begin{eqnarray*} I_{e, 3} & = & \left| \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. + \dfrac{\Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot \left| \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \Delta_{p + 1} \cdot \left| \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\left( S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    By inequality (3.6) from Step 1.1), we know that

    \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} \right| \leq C_{s, \text{loc} } \cdot \Delta_{p + 1}^{2}

    holds. This implies

    \begin{eqnarray*} I_{e, 3} & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & = & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + \Delta_{p + 1}^{3} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \cdot \Delta_{p + 1} \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\}. \end{eqnarray*}

    Combining our results, we obtain

    \begin{eqnarray*} & & \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & I_{c} + I_{d} + I_{e} \\ & \leq & I_{c} + I_{d} + I_{e, 1} + I_{e, 2} + I_{e, 3} \\ & \leq & \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert I_{s, j}^{\prime \prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot M_{\gamma}^{2} \cdot N + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty} \\ & & + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\} \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ \dfrac{\lVert I_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + M_{\gamma}^{2} \cdot N + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty} \right. \\ & & \left. + 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty} + 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\} \end{eqnarray*}

    We define

    \begin{eqnarray*} C_{I, \text{loc}} & : = & \left\{ \dfrac{\lVert I_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + M_{\gamma}^{2} \cdot N + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty} \right. \\ & & \left. + 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty} + 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\}. \end{eqnarray*}

    We conclude

    \begin{equation} \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \leq \Delta_{p + 1}^{2} \cdot C_{I, \text{loc}}. \end{equation} (3.7)

    1.3) It holds

    \widetilde{R_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} = R_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)}.

    We consider \left| R_{s, j} \left(t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| and obtain

    \begin{eqnarray*} & & \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| R_{s, j} \left( t_{p + 1} \right) - R_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Application of zero addition and the triangle inequality yields

    \begin{eqnarray*} & & \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} R_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right. \\ & & \left. + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right. \\ & & \left. + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right. \\ & & \left. + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left | \int\limits_{t_{p}}^{t_{p + 1}} R_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \underbrace{\left| \int\limits_{t_{p}}^{t_{p + 1}} \left( R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d}\tau \right|}_{: = I_{f, 1}} + \underbrace{\left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \left( I_{s, j} \left( t_{p} \right) - I_{s, j} \left( t_{p + 1} \right) \right) \right|}_{: = I_{f, 2}} \\ & & + \underbrace{\left| \Delta_{p + 1} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \left( \gamma_{I_{s, j}} \left( t_{p} \right) - \gamma_{I_{s, j}} \left( t_{p + 1} \right) \right) \right|}_{: = I_{f, 3}} + \underbrace{\left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \right|}_{: = I_{f, 4}}. \end{eqnarray*}

    By the mean value theorem of calculus, there are \xi_{f, 1}, \xi_{f, 2}, \xi_{f, 3}, \xi_{f, 4} \in \left(t_{p}, t_{p + 1} \right) such that

    R_{s, j}^{\prime \prime} \left( \xi_{f, 1} \right) = \dfrac{R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \, , \, \, I_{s, j}^{\prime} \left( \xi_{f, 2} \right) = \dfrac{I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \, \, , \, \, \gamma_{I_{s, j}}^{\prime} \left( \xi_{f, 3} \right) = \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    hold. This implies

    \begin{eqnarray*} I_{f, 1} & : = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d}\tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot \dfrac{R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot R_{s, j}^{\prime \prime} \left( \xi_{f, 1} \right) \, \text{d}\tau \right| \leq \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert R_{s, j}^{\prime \prime} \rVert_{\infty}, \\ I_{f, 2} & : = & \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \left( I_{s, j} \left( t_{p} \right) - I_{s, j} \left( t_{p + 1} \right) \right) \right| = \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \cdot \dfrac{I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \cdot I_{s, j}^{\prime} \left( \xi_{f, 2} \right) \right| \leq \Delta_{p + 1}^{2} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} \end{eqnarray*}

    and

    \begin{eqnarray*} I_{f, 3} & : = & \left| \Delta_{p + 1} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \left( \gamma_{I_{s, j}} \left( t_{p} \right) - \gamma_{I_{s, j}} \left( t_{p + 1} \right) \right) \right| = \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}}^{\prime} \left( \xi_{f, 3} \right) \right| \leq \Delta_{p + 1}^{2} \cdot N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty}. \end{eqnarray*}

    By inequality (3.7) from Step 1.2), we know that

    \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} \right| \leq \Delta_{p + 1}^{2} \cdot C_{I, \text{loc} }

    is valid. We infer that

    \begin{eqnarray*} I_{f, 4} & = & \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \right| \\ & \leq & \Delta_{p + 1} \cdot \lVert \gamma_{I_{s, j}} \rVert_{\infty} \cdot \Delta_{p + 1}^{2} \cdot C_{I, \text{loc}} \leq \Delta_{p + 1}^{3} \cdot C_{I, \text{loc}} \cdot M_{\gamma} \end{eqnarray*}

    holds. Summarizing our results, we obtain

    \begin{eqnarray*} \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| & \leq & I_{f, 1} + I_{f, 2} + I_{f, 3} + I_{f, 4} \\ & \leq & \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert R_{s, j}^{\prime \prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} \\ & & + \Delta_{p + 1}^{2} \cdot N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty} + \Delta_{p + 1}^{3} \cdot C_{I, \text{loc}} \cdot M_{\gamma} \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ \dfrac{\lVert R_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} + N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty} + \Delta_{p + 1} \cdot C_{I, \text{loc}} \cdot M_{\gamma} \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot \underbrace{\left\{ \dfrac{\lVert R_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} + N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty} + C_{I, \text{loc}} \cdot M_{\gamma} \right\}}_{: = C_{R, \text{loc}}} \\ & = & \Delta_{p + 1}^{2} \cdot C_{R, \text{loc}}. \end{eqnarray*}

    and

    \begin{equation} \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \leq \Delta_{p + 1}^{2} \cdot C_{R, \text{loc}} \end{equation} (3.8)

    in a short manner.

    1.4) Conclusively, we obtain

    \begin{equation} \begin{split} & \, \, \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \\ & \leq \Delta_{p + 1}^{2} \cdot \underbrace{\max \left\{ C_{S, \text{loc}}, C_{I, \text{loc}}, C_{R, \text{loc}} \right\}}_{: = C_{ \text{loc}}} = \Delta_{p + 1}^{2} \cdot C_{ \text{loc}} \end{split} \end{equation} (3.9)

    from the inequalities (3.6), (3.7) and (3.8).

    2) In reality, the points \left(t_{p}, S_{s, j}^{ \text{num}} \left(t_{p} \right) \right) , \left(t_{p}, I_{s, j}^{ \text{num}} \left(t_{p} \right) \right) and \left(t_{p}, R_{s, j}^{ \text{num}} \left(t_{p} \right) \right) do not lie on the continuous solution graph. For that reason, we must investigate how procedural errors S_{s, j}^{ \text{num}} \left(t_{p} \right) - S_{s, j} \left(t_{p} \right) , I_{s, j}^{ \text{num}} \left(t_{p} \right) - I_{s, j} \left(t_{p} \right) and R_{s, j}^{ \text{num}} \left(t_{p} \right) - R _{s, j} \left(t_{p} \right) propagate to the \left(p + 1 \right) -th time step. These estimates are going to be carried out in the following steps 2) and 3) of this proof.

    2.1) At first, we must consider \left| S_{s, j}^{ \text{num}} \left(t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . Remember that \widetilde{S_{s, j}^{ \text{num}} \left(t_{p} \right)} = S_{s, j} \left(t_{p} \right) . Note that

    S_{s, j}^{ \text{num} } \left( t_{p + 1} \right) = S_{s, j}^{ \text{num} } \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j}^{ \text{num} } \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \cdot \dfrac{I_{q, k}^{ \text{num} } \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num} } \left( t_{p} \right)}{N} \right\}}

    and

    \widetilde{S_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} = S_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}

    are valid. Hence, we obtain

    \begin{eqnarray*} & & \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \dfrac{S_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}} - \dfrac{S_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & = & \left| \dfrac{\left\{ S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right\} + \Delta_{p + 1} \cdot S_{s, j}^{ \text{num}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{\left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{\left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}} \right|. \end{eqnarray*}

    Application of the triangle inequality and zero addition yields

    \begin{eqnarray*} & & \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot S_{s, j}^{ \text{num}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot S_{s, j}^{ \text{num}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \left( S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\}. \end{eqnarray*}

    Summarizing this result, we obtain

    \begin{equation} \begin{split} & \, \, \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & \, \, + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\}. \end{split} \end{equation} (3.10)

    2.2) Now, we consider \left| I_{s, j}^{ \text{num}} \left(t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . We first observe that

    \begin{eqnarray*} I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) & = & I_{s, j}^{ \text{num}} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \end{eqnarray*}

    and

    \begin{eqnarray*} \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & \widetilde{I_{s, j} \left( t_{p} \right)} - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p} \right)}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot \widetilde{I_{q, k}^{ \text{num}} \left( t_{p} \right)}}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & = & I_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \end{eqnarray*}

    are valid from step 1.2). Application of the triangle inequality and zero addition yields

    \begin{eqnarray*} & & \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - I_{s, j} \left( t_{p} \right) + \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \left| \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \left| \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \left| \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\left( S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot \left( I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\}. \end{eqnarray*}

    Using (3.10), we obtain

    \begin{eqnarray*} & & \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\} \right\} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \\ & = & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \end{eqnarray*}

    and the result reads

    \begin{equation} \begin{split} & \, \, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & \, \, + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & \, \, + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \\ & \, \, + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\}. \end{split} \end{equation} (3.11)

    2.3) We consider \left| R_{s, j}^{ \text{num}} \left(t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . From step 1.3), we know that

    R_{s, j}^{ \text{num} } \left( t_{p + 1} \right) = R_{s, j}^{ \text{num} } \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)

    and

    \widetilde{R_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} = R_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)}

    hold. By application of the triangle inequality, this implies

    \begin{eqnarray*} & & \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - R_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Using inequality (3.11), we obtain

    \begin{eqnarray*} & & \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left\{ \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right\}. \end{eqnarray*}

    We conclude that

    \begin{equation} \begin{split} & \, \, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left\{ \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \\ & \, \, \left. + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & \, \, \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & \, \, \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \\ & \, \, \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right\}. \end{split} \end{equation} (3.12)

    holds.

    2.4) Now, we want to combine our results. Since s \in \left\{ f, m \right\} and j \in \left\{ 1, \ldots, N_{a} \right\} are arbitrary indices, we infer by inequalities (3.10), (3.11) and (3.12) that

    \begin{eqnarray*} & & \, \, \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \\ & \leq & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\}, \right. \\ & & \left. \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\}, \right. \\ & & \left. \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left\{ \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \right. \\ & & \left. \left. + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \right. \\ & & \left. \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \right. \\ & & \left. \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \right. \\ & & \left. \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right\} \right\} \\ & \leq & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| \right\} \\ & & \times \left\{ 1 + \Delta_{p + 1} \cdot \left\{ 2 \cdot M_{\gamma} + 4 \cdot N_{a} \cdot M_{\beta} + 8 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \Delta_{p + 1} \right\} \right\} \\ & \leq & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| \right\} \\ & & \times \left\{ 1 + \Delta_{p + 1} \cdot \left\{ 2 \cdot M_{\gamma} + 4 \cdot N_{a} \cdot M_{\beta} + 8 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \right\} \right\} \end{eqnarray*}

    holds because \Delta_{p + 1} \leq 1 by assumption. This yields

    \begin{equation} \begin{split} & \, \, \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \\ & \leq \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| \right\} \\ & \, \, \times \left\{ 1 + \Delta_{p + 1} \cdot \underbrace{\left\{ 2 \cdot M_{\gamma} + 4 \cdot N_{a} \cdot M_{\beta} + 8 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \right\}}_{: = C_{ \text{prop}}} \right\}. \end{split} \end{equation} (3.13)

    3) Finally, we can finish our proof of convergence. For abbreviation, we write

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & : = & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \end{eqnarray*}

    where \mathbf{z} \in \mathbb{R}^{6 \cdot N_{a}} is defined as in the proof of Theorem 2.5. Our proof is heavily based on the inequality

    1 + x \leq \text{exp} \left( x \right)

    for all x \geq 0 . Note that t_{1} = 0 < t_{2} < \ldots < t_{M - 1} < t_{M} = T .

    3.1) At first, we want to inductively prove that

    \begin{equation} \begin{split} \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} & \leq \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & \, \, + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \end{split} \end{equation} (3.14)

    holds for all p \in \left\{ 0, \ldots, M - 1 \right\} . Let p = 0 first. The inequality (3.14) is fulfilled. Let p = 1 to understand the concept. By application of the triangle inequality and inequalities (3.9) and (3.13), we see that

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{2} \right) - \mathbf{z} \left( t_{2} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{2} \right) - \widetilde{\mathbf{z}^{ \text{num}} \left( t_{2} \right)} \rVert_{ \text{conv}} + \lVert \widetilde{\mathbf{z}^{ \text{num}} \left( t_{2} \right)} - \mathbf{z} \left( t_{2} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \left\{ 1 + C_{ \text{prop}} \cdot \Delta_{2} \right\} + C_{ \text{loc}} \cdot \Delta_{2}^{2} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \Delta_{2} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{2} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{k} \right\} \right) \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \Delta_{2} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{2} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{k} \right\} \right) \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{1} \right\} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{2} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{k} \right\} \right) \end{eqnarray*}

    is valid. We now assume that

    \begin{equation*} \begin{split} \lVert \mathbf{z}^{ \text{num}} \left( t_{p} \right) - \mathbf{z} \left( t_{p} \right) \rVert_{ \text{conv}} & \leq \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{1} \right\} \right) \\ & \, \, + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{k} \right\} \right) \end{split} \end{equation*}

    holds. We now want to show that (3.14) follows. We see that

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{\mathbf{z}^{ \text{num}} \left( t_{p + 1} \right)} \rVert_{ \text{conv}} + \lVert \widetilde{\mathbf{z}^{ \text{num}} \left( t_{p + 1} \right)} - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{p} \right) - \mathbf{z} \left( t_{p} \right) \rVert_{ \text{conv}} \cdot \left\{ 1 + C_{ \text{prop}} \cdot \Delta_{p + 1} \right\} + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & \leq & \left\{ \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{1} \right\} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{k} \right\} \right) \right\} \\ & & \times \, \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{p} \right\} \right) + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & & + \left( C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{k} \right\} \right) \right) \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{p} \right\} \right) + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & & + \left( C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \right) + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & & + \left( C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \right) \end{eqnarray*}

    holds. This proves (3.14) by induction.

    3.2) Concluding our proof, we consider

    \begin{equation*} \begin{split} \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} & \leq \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & \, \, + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \end{split} \end{equation*}

    from (3.14). We define \Delta : = \max\limits_{r \in \left\{ 2, \ldots, M \right\}} \Delta_{r} . We infer that

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) + C_{ \text{loc}} \cdot \Delta \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k} \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) + C_{ \text{loc}} \cdot \Delta \cdot T \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) \end{eqnarray*}

    holds. If the initial conditions of our continuous and our time-discrete problem formulation coincide and \Delta \to 0 , the time-discrete solution convergences linearly towards the continuous solution. This proves our assertion.

    We briefly summarize our numerical solution algorithm for the time-discrete explicit-implicit numerical scheme (3.1) in Table 1. This summary is intended to give a brief overview of aspects which need to be considered during implementation. Especially, we state all inputs which are important for our time-discrete numerical scheme.

    Table 1.  Algorithmic summary of our time-discrete explicit-implicit numerical solution scheme for the age- and sex-structured SIR model.
    Input: - Population size N
    - Increasing sequence of time points t_{1} = 0 < t_{2} < \ldots < t_{M - 1} < t_{M} = T
    - Initial condition of susceptible people S_{s, j} \left(t_{1} \right) for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Initial condition of infected people I_{s, j} \left(t_{1} \right) for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Initial condition of recovered people R_{s, j} \left(t_{1} \right) for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Time-varying transmission rates \beta_{S_{s, j}, I_{q, k}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right)
    for arbitrary s, q \in \left\{ f, m \right\} and arbitrary j, k \in \left\{ 1, \ldots, N_{a} \right\}
    - Time-varying recovery rates \gamma_{I_{s, j}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right)
    for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\}
    Steps: For all p \in \left\{ 1, \ldots, M - 1 \right\} do the following:
    - Compute S_{s, j} \left(t_{p + 1} \right) for arbitrary s \in \left\{ f, m \right\} and all
    j \in \left\{ 1, \ldots, N_{a} \right\} by (3.3)
    - Compute I_{s, j} \left(t_{p + 1} \right) for arbitrary s \in \left\{ f, m \right\} and all
    j \in \left\{ 1, \ldots, N_{a} \right\} by (3.4)
    - Compute R_{s, j} \left(t_{p + 1} \right) for arbitrary s \in \left\{ f, m \right\} and all
    j \in \left\{ 1, \ldots, N_{a} \right\} by (3.5)
    Output: - Sequence of susceptible people \left\{ S_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Sequence of infected people \left\{ I_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Sequence of recovered people \left\{ R_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}

     | Show Table
    DownLoad: CSV

    In this section, we illustrate our theoretical findings by one synthetic data example. At first, we sum up all important information to set calculations up. Finally, we show the results and discuss these findings with respect to our theoretical results.

    Let us provide our setting. In Table 2, we summarize the corresponding indices of population subetaoups. The total population is divided into six subetaoups. Now, we report the (time-varying) transmission rates \beta_{S_{s, j}, I_{q, k}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right) and (time-varying) recovery rates \gamma_{I_{s, j}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right) for arbitrary s, q \in \left\{ f, m \right\} and arbitrary j, k \in \left\{ 1, \ldots, N_{a} \right\} . These data can be found in Tables 3 and 4. This is an imaginary disease which spreads mainly in the adult population. All initial conditions of populations subetaoups are described in Table 5. The final time is set T = 180 with an equidistant time sequence

    t_{1} = 0 \lt t_{2} = 1 \lt \ldots \lt t_{180} = 179 \lt t_{181} = 180
    Table 2.  Indices of corresponding population subgroups.
    Young Adult Elder
    Female f, y f, a f, e
    Male m, y m, a m, e

     | Show Table
    DownLoad: CSV
    Table 3.  (Time-varying) transmission rates.
    \beta_{S, I} I_{f, y} I_{f, a} I_{f, e} I_{m, y} I_{m, a} I_{m, e}
    S_{f, y} 0.10 0.08 0.04 0.10 0.08 0.04
    S_{f, a} 0.08 0.20 0.02 0.08 0.20 0.02
    S_{f, e} 0.04 0.02 0.01 0.04 0.02 0.01
    S_{m, y} 0.10 0.08 0.04 0.10 0.08 0.04
    S_{m, a} 0.08 0.20 0.02 0.08 0.20 0.02
    S_{m, e} 0.04 0.02 0.01 0.04 0.02 0.01

     | Show Table
    DownLoad: CSV
    Table 4.  (Time-varying) recovery rates.
    I_{f, y} I_{f, a} I_{f, e} I_{m, y} I_{m, a} I_{m, e}
    \gamma_{I} 0.20 0.10 0.05 0.20 0.10 0.05

     | Show Table
    DownLoad: CSV
    Table 5.  Initial conditions for all population subgroups.
    f, y f, a f, e m, y m, a m, e
    S \left(0 \right) 10000 20000 19900 10000 20000 19900
    I \left(0 \right) 35 35 30 35 35 30
    R \left(0 \right) 0 0 0 0 0 0

     | Show Table
    DownLoad: CSV

    and this implies M = 181 . The total population size reads N = 100000 due to Table 5. Hence, all data are available for our numerical simulation.

    Here, we present the results of our setting described before. In Figure 1, the temporal development of all susceptible population subetaoups is depicted. It can be clearly seen that the resulting graphs are decreasing in time. In Figure 2, all graphs of the temporal development with regard to all infectious subetaoups are portrayed. Figure 3 illustrates the temporal development of all recovered population subetaoups. As expected, these curves are increasing in time. Finally, conservation of the total population size for our implicit-explicit numerical solution scheme is shown in Figure 4.

    Figure 1.  Results for all susceptible population subgroups.
    Figure 2.  Results for all infectious population subgroups.
    Figure 3.  Results for all recovered population subgroups.
    Figure 4.  Conservation of total population size.

    We introduced an age- and sex-structured SIR model for short-term predictions in Section 2. We established global existence, global uniqueness, non-negativity and boundedness of the solution. Additionally, we showed some monotonicity properties and proved convergence to a disease-free equilibrium in the continuous setting. Afterwards, we proposed an explicit-implicit numerical solution scheme in Section 3. We were able to demonstrate that all aforementioned properties transfer to this time-discrete setting of the age- and sex-structured SIR model for short-term predictions. We also concluded that this scheme is linearly convergent towards the continuous solution. For short-term predictions, effects of demography and transmission between age groups can be simplified or neglected in this case.

    To continue this work and extend it to long-term predictions that definitely play an important role, it might be fruitful to additionally take birth rates and death rates into account. The works [20,21] can serve as examples for extensions of our work. Incubation times also lead to delays from transfer between different compartments. Hence, introduction of delays in our system might be another possible future research direction. Examples can be seen in [22]. Furthermore, spatial inhomogeneities should also be considered because spreading of diseases differ in regions depending on social status for example [23,24], which leads to ODE-PDE coupled systems. Application of higher-order methods might be considerable as well [25,26].

    Finally, we stress the fact that the inverse problem in dynamics of biological systems needs further investigation [27,28,29,30].

    Both authors conceived and designed the research. Benjamin Wacker analyzed the time-continuous problem formulation. Benjamin Wacker analyzed the time-discrete problem formulation. Benjamin Wacker implemented the explicit-implicit numerical solution scheme. Both authors discussed the numerical example. Both authors drafted and edited this manuscript.

    Both authors declare that they have no conflict of interest.



    [1] Chen L, Zhao J, Meng X, et al. (2023) Experimental evaluation on mechanical and thermal insulation properties of shotcrete under constant-variable temperature. Struct Concrete 24: 2041–2056. https://doi.org/10.1002/suco.202200200 doi: 10.1002/suco.202200200
    [2] Abood AM, Khazal H, Hassan AF (2022) On the determination of first-mode stress intensity factors and T-stress in a continuous functionally graded beam using digital image correlation method. AIMS Mater Sci 9: 56–70. https://doi.org/10.3934/matersci.2022004 doi: 10.3934/matersci.2022004
    [3] Golewski GL (2022) The specificity of shaping and execution of monolithic pocket foundations (PF) in hall buildings. Buildings 12: 192. https://doi.org/10.3390/buildings12020192. doi: 10.3390/buildings12020192
    [4] Kovacik J, Marsavina L, Linul E (2018) Poisson's ratio of closed-cell aluminum foams. Materials 11: 1904. https://doi.org/10.3390/ma11101904 doi: 10.3390/ma11101904
    [5] Shaban WM, Yang J, Su H, et al. (2019) Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry. Constr Build Mater 216: 632–647. https://doi.org/10.1016/j.conbuildmat.2019.04.231 doi: 10.1016/j.conbuildmat.2019.04.231
    [6] Tayeh BA, Alyousef R, Alabduljabbar H, et al. (2021) Recycling of rice husk waste for sustainable concrete: A critical review. J Clean Prod 312: 127734. https://doi.org/10.1016/j.jclepro.2021.127734 doi: 10.1016/j.jclepro.2021.127734
    [7] Abdulrahman H, Muhamad R, Visitin P, et al. (2022) Mechanical properties and bond stress-slip behaviour of fly ash geopolymer concrete. Constr Build Mater 327: 126909. https://doi.org/10.1016/j.conbuildmat.2022.126909 doi: 10.1016/j.conbuildmat.2022.126909
    [8] Alex AG, Kemal Z, Gebrehiwet T, et al. (2022) Effect of α: Phase nano Al2O3 and rice husk ash in cement mortar. Adv Civ Eng 2022: 4335736. https://doi.org/10.1155/2022/4335736 doi: 10.1155/2022/4335736
    [9] Chen S, Wang H, Guan J, et al. (2022) Determination method and prediction model of fracture and strength of recycled aggregate concrete at different curing ages. Constr Build Mater 343: 128070. https://doi.org/10.1016/j.conbuildmat.2022.128070 doi: 10.1016/j.conbuildmat.2022.128070
    [10] Guan J, Yin Y, Li Y, et al. (2022) A design method for determining fracture toughness and tensile strength pertinent to concrete sieving curve. Eng Fract Mech 271: 108596. https://doi.org/10.1016/j.engfracmech.2022.108596 doi: 10.1016/j.engfracmech.2022.108596
    [11] Wu J, Yang J, Zhang R, et al. (2022) Fatigue life estimating for chloride attacked RC beams using S-N curve combined with mesoscale simulation of chloride ingress. Int J Fat 158: 106751. https://doi.org/10.1016/j.ijfatigue.2022.106751 doi: 10.1016/j.ijfatigue.2022.106751
    [12] Guan J, Zhang Y, Meng J, et al. (2022) A simple method for determining independent fracture toughness and tensile strength of rock. Int J Min Sci Technol 32: 707–726. https://doi.org/10.1016/j.ijmst.2022.05.004 doi: 10.1016/j.ijmst.2022.05.004
    [13] Zeyad AM, Tayeh BA, Yusuf MO (2019) Strength and transport characteristics of volcanic pumice powder based high strength concrete. Constr Build Mater 216: 314–324. https://doi.org/10.1016/j.conbuildmat.2019.05.026 doi: 10.1016/j.conbuildmat.2019.05.026
    [14] Gao Y, Jing H, Yu Z, et al. (2022) Particle size distribution of aggregate effects on the reinforcing roles of carbon nanotubes in enhancing concrete ITZ. Constr Build Mater 327: 126964. https://doi.org/10.1016/j.conbuildmat.2022.126964 doi: 10.1016/j.conbuildmat.2022.126964
    [15] Szeląg M (2018) Development of cracking patterns in modified cement matrix with microsilica. Materials 11: 1928. https://doi.org/10.3390/ma11101928 doi: 10.3390/ma11101928
    [16] Xie T, Yang G, Zhao X, et al. (2020) A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials. J Clean Prod 251: 119752. https://doi.org/10.1016/j.jclepro.2019.119752 doi: 10.1016/j.jclepro.2019.119752
    [17] Nodehi M, Ozbakkaloglu T, Gholampour A (2022) Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review. Autom Constr 138: 104215. https://doi.org/10.1016/j.autcon.2022.104215 doi: 10.1016/j.autcon.2022.104215
    [18] Bicer A (2020) Effect of production temperature on thermal and mechanical properties of polystyrene-fly ash composites. Adv Compos Lett 29: 1–8. https://doi.org/10.1177/2633366X20917988 doi: 10.1177/2633366X20917988
    [19] Thorstensen RT (2019) Preventing early age chloride into low-carbon concrete. AIMS Mater Sci 6: 1020-1032. https://doi.org/10.3934/matersci.2019.6.1020. doi: 10.3934/matersci.2019.6.1020
    [20] Wang L, Zhang P, Golewski, G, et al. (2023) Editorial: Fabrication and properties of concrete containing industrial waste. Front Mater 10: 1169715. https://doi.org/10.3389/fmats.2023.1169715 doi: 10.3389/fmats.2023.1169715
    [21] Han Q, Zhang P, Wu J, et al. (2022) Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2. Nanotech Rev 1: 1478–1498. https://doi.org/10.1515/ntrev-2022-0092 doi: 10.1515/ntrev-2022-0092
    [22] Wang J, Li J, Shi Z, et al. (2022) Energy evolution and failure characteristics of red sandstone under discontinuous multilevel fatigue loading. Int J Fat 160: 106830. https://doi.org/10.1016/j.ijfatigue.2022.106830 doi: 10.1016/j.ijfatigue.2022.106830
    [23] Lyratzakis A, Tsompanakis Y, Psarropoulos PN (2022) Efficient mitigation of high-speed train vibrations on adjacent reinforced concrete buildings. Constr Build Mater 314: 125653. https://doi.org/10.1016/j.conbuildmat.2021.125653 doi: 10.1016/j.conbuildmat.2021.125653
    [24] Park S, Beak J, Kim K, et al. (2021) Study on reduction effect of vibration propagation due to internal explosion using composite materials. Int J Concr Struct Mater 15: 30. https://doi.org/10.1186/s40069-021-00467-8 doi: 10.1186/s40069-021-00467-8
    [25] Fakoor M, Shahsavar S (2021) The effect of T-stress on mixed mode Ⅰ/Ⅱ fracture of composite materials: reinforcement isotropic solid model in combination with maximum shear stress theory. Int J Sol Struct 229: 111145. https://doi.org/10.1016/j.ijsolstr.2021.111145 doi: 10.1016/j.ijsolstr.2021.111145
    [26] Mehri Khansari N, Fakoor M, Berto F (2019) Probabilistic micromechanical damage model for mixed mode Ⅰ/Ⅱ fracture investigation of composite materials. Theor Appl Fract Mech 99: 177–193. https://doi.org/10.1016/j.tafmec.2018.12.003 doi: 10.1016/j.tafmec.2018.12.003
    [27] Craciun EM (2008) Energy criteria for crack propagation in prestresses elastic composites. Sol Mech Appl 154: 193–237. https://doi.org/10.1007/978-1-4020-8772-1_7 doi: 10.1007/978-1-4020-8772-1_7
    [28] Singh A, Das S, Craciun EM (2019) Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip. Mech Compos Mater 55: 285–296. https://doi.org/10.1007/s11029-019-09812-1 doi: 10.1007/s11029-019-09812-1
    [29] Golewski GL, Szostak B (2022) Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C–S–H phase. Struct Eng Mech 82: 543–556. https://doi.org/10.12989/sem.2022.82.4.543 doi: 10.12989/sem.2022.82.4.543
    [30] Biricik H, Sarier N (2014) Comparative study of the characteristics of nanosilica-, silica fume- and fly ash-incorporated cement mortars. Mater Res 17: 570–582. https://doi.org/10.1590/S1516-14392014005000054. doi: 10.1590/S1516-14392014005000054
    [31] Karim MR, Zain MFM, Jamil M, et al. (2015) Development of a zero-cement binder using slag, fly ash, and rice husk ash with chemical activator. Adv Mater Sci Eng 2015: 247065. https://doi.org/10.1155/2015/247065 doi: 10.1155/2015/247065
    [32] Sohu S, Bheel N, Jhatial AH, et al. (2022) Sustainability and mechanical property assessment of concrete incorporating eggshell powder and silica fume as binary and ternary cementitious materials. Env Sci Poll Res 29: 58685–58697. https://doi.org/10.1007/s11356-022-19894-5 doi: 10.1007/s11356-022-19894-5
    [33] Tee KF, Mostofizadeh S (2021) Numerical and experimental investigation of concrete with various dosage of fly ash. AIMS Mater Sci 8: 587–607. https://doi.org/10.3934/matersci.2021036 doi: 10.3934/matersci.2021036
    [34] Han F, Pu S, Zhou Y, et al. (2022) Effect of ultrafine mineral admixtures on the rheological properties of fresh cement paste: A review. J Build Eng 51: 104313. https://doi.org/10.1016/j.jobe.2022.104313. doi: 10.1016/j.jobe.2022.104313
    [35] El-Fekyl MS, Youssef P, El-Tair AM, et al. (2019) Effect of nano silica addition on enhancing the performance of cement composites reinforced with nano cellulose fibers. AIMS Mater Sci 6: 864–883. https://doi.org/10.3934/matersci.2018.6.864. doi: 10.3934/matersci.2018.6.864
    [36] Golewski GL (2023) Combined effect of coal fly ash (CFA) and nanosilica (nS) on the strength parameters and microstructural properties of eco-friendly concrete. Energies 16: 452. https://doi.org/10.3390/en16010452 doi: 10.3390/en16010452
    [37] Papatzani S, Paine K (2019) Optimization of low-carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particles. Adv Mater Sci Eng 2019: 5931306. https://doi.org/10.1155/2019/5931306 doi: 10.1155/2019/5931306
    [38] British Standards Institution (BSI) (2013) Tests for mechanical and physical properties of aggregates. Part 6: determination of particle density and water absorption. EN 1097-6: 2013.
    [39] Zhang P, Gao JX, Dai XB, et al. (2016) Fracture behavior of fly ash concrete containing silica fume. Struct Eng Mech 59: 261–275. https://doi.org/10.12989/sem.2016.59.2.261 doi: 10.12989/sem.2016.59.2.261
    [40] Zhang P, Wan J, Wang K, et al. (2017) Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review. Constr Build Mater 148: 648–658. https://doi.org/10.1016/j.conbuildmat.2017.05.059 doi: 10.1016/j.conbuildmat.2017.05.059
    [41] British Standards Institution (BSI) (2012) Testing hardened concrete—Part 3: Compressive strength of test specimens. EN 12390-3: 2011+AC.
    [42] British Standards Institution (BSI) (2009) Testing hardened concrete—Part 6: Tensile splitting strenght of test specimens. EN 12390-6: 2009.
    [43] Golewski GL (2022) Fracture performance of cementitious composites based on quaternary blended cements. Materials 15: 6023. https://doi.org/10.3390/ma15176023 doi: 10.3390/ma15176023
    [44] Bu J, Xu H, Wu X, et al. (2022) Experimental study on fracture properties of dam concrete under post-peak cyclic loading based on DIC and acoustic emission techniques. Fat Fract Eng Mater Struct 45: 2646–2661. https://doi.org/10.1111/ffe.13779 doi: 10.1111/ffe.13779
    [45] Golewski GL (2023) The phenomenon of cracking in cement concretes and reinforced concrete structures: The mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—A review. Buildings 13: 765. https://doi.org/10.3390/buildings13030765 doi: 10.3390/buildings13030765
    [46] Wardach M, Krentowski JR, Mackiewicz M (2022) Evaluation of precast beam defletions resulting in cracks in curtain walls. Eng Fail Anal 140: 106568. https://doi.org/10.1016/engfailanal.2022.106568 doi: 10.1016/engfailanal.2022.106568
    [47] Zhang S, Han B, Xie H, et al. (2021) Brittleness of concrete under different curing conditions. Materials 14: 7865. https://doi.org/10.3390/ma14247865 doi: 10.3390/ma14247865
    [48] Jenq Y, Shah SP (1985) Two parameter fracture model for concrete. J Eng Mech 111: 1227–1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227) doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227)
    [49] Raphael JM (1984) Tensile strength of concrete. ACI Mater J 81: 158–165. https://doi.org/10.14359/10653 doi: 10.14359/10653
    [50] Oluokun FA (1991) Prediction of concrete tensile strength from compressive strength: evaluation of existing relations for normal weight concrete. ACI Mater J 88: 302–309. https://doi.org/10.14359/1942 doi: 10.14359/1942
    [51] Zhou F, Meng H, Pan G, et al. (2022) Influence of CSH grown in situ on steel slag powder on the performance of fresh and hardened cement pastes. Constr Build Mater 344: 128269. https://doi.org/10.1016/j.conbuildmat.2021.125653 doi: 10.1016/j.conbuildmat.2021.125653
    [52] Li H, Xiang Y, Xu C (2022) Effect of C-S-H seed/PCE nanocmposites and triisopropanolamine on Portland cement properties: Hydration kinetic and strength. J Build Eng 57: 104946. https://doi.org/10.1016/j.cemconcomp.2022.104466 doi: 10.1016/j.cemconcomp.2022.104466
    [53] Ho DWS, Lewis RK (1985) Effectiveness of fly ash for strength and durability of concrete. Cem Concr Res 15: 793–800. https://doi.org/10.1016/0008-8846(85)90145-0 doi: 10.1016/0008-8846(85)90145-0
    [54] Fraay ALA, Bijen JM, de Haan YM (1989) The reaction of fly ash in concrete. A critical examination. Cem Concr Res 19: 235–246. https://doi.org/10.1016/0008-8846(89)90088-4 doi: 10.1016/0008-8846(89)90088-4
    [55] Heba AA (2021) A summary on the use of fly ash as a partial replacement material for cement in concrete. UKH J Sci Eng 5: 72–80. https://doi.org/10.25079/ukhjse.v5n2y2021.pp72-80 doi: 10.25079/ukhjse.v5n2y2021.pp72-80
    [56] Li Y, Wu B, Wang R (2022) Critical review and gap analysis on the use of high-volume fly ash as a substitute constituent in concrete. Constr Build Mater 341: 127889. https://doi.org/10.1016/j.conbuildmat.2022.127889 doi: 10.1016/j.conbuildmat.2022.127889
    [57] Zhang MH (1995) Microstructure, crack propagation and mechanical properties of cement pastes containing high volumes of fly ashes. Cem Concr Res 25: 1165–1178. https://doi.org/10.1016/0008-8846(95)00109-P doi: 10.1016/0008-8846(95)00109-P
    [58] Deng Y, Yan C, Zhang J, et al. (2022) Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder. J Clean Prod 333: 130222. https://doi.org/10.1016/j.jclepro.2021.130222 doi: 10.1016/j.jclepro.2021.130222
    [59] Torrence CE, Trageser JE, Jones RE, et al. (2022) Sensivity of the strength and toughness of concrete to the properties of the interfacial transition zone. Constr Build Mater 336: 126875. https://doi.org/10.1016/j.conbuildmat.2022.126875 doi: 10.1016/j.conbuildmat.2022.126875
    [60] Lam L, Wong YL, Poon CS (1998) Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cem Concr Res 28: 271–283. https://doi.org/10.1016/S0008-8846(97)00269-X doi: 10.1016/S0008-8846(97)00269-X
    [61] Atis CD (2005) Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cem Concr Res 35: 1112–1121. https://doi.org/10.1016/j.cemconres.2004.07.037 doi: 10.1016/j.cemconres.2004.07.037
    [62] Elshekh AEA, Shafiq N, Nuruddin MF, et al. (2013) Mechanical properties of high strength concrete using fly ash. 2013 IEEE Business Engineering and Industrial Applications Colloqium (BEIAC), 306–310. https://doi.org/10.1109/BEIAC.2013.6560137 doi: 10.1109/BEIAC.2013.6560137
  • This article has been cited by:

    1. Benjamin Wacker, Jan Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02995-1
    2. Yanyan Du, Qimin Zhang, Anke Meyer-Baese, The positive numerical solution for stochastic age-dependent capital system based on explicit-implicit algorithm, 2021, 165, 01689274, 198, 10.1016/j.apnum.2021.02.015
    3. Benjamin Wacker, Jan Christian Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03399-5
    4. Benjamin Wacker, Jan Christian Schlüter, Qualitative analysis of two systems of nonlinear first‐order ordinary differential equations for biological systems, 2022, 45, 0170-4214, 4597, 10.1002/mma.8056
    5. Eleonora Messina, Mario Pezzella, Antonia Vecchio, Nonlocal finite difference discretization of a class of renewal equation models for epidemics, 2023, 20, 1551-0018, 11656, 10.3934/mbe.2023518
    6. Benjamin Wacker, Framework for solving dynamics of Ca2+ ion concentrations in liver cells numerically: Analysis of a non‐negativity‐preserving non‐standard finite‐difference method, 2023, 46, 0170-4214, 16625, 10.1002/mma.9464
    7. Haoyu Wu, David A. Stephens, Erica E. M. Moodie, An SIR‐based Bayesian framework for COVID‐19 infection estimation, 2024, 52, 0319-5724, 10.1002/cjs.11817
    8. Benjamin Wacker, Jan Christian Schlüter, A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications, 2023, 20, 1551-0018, 12923, 10.3934/mbe.2023577
    9. Benjamin Wacker, Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis, 2024, 21, 1551-0018, 7805, 10.3934/mbe.2024343
    10. Benjamin Wacker, Qualitative Study of a Dynamical System for Computer Virus Propagation—A Nonstandard Finite‐Difference‐Methodological View, 2025, 0170-4214, 10.1002/mma.10798
    11. Benjamin Wacker, Analysis of a Finite‐Difference Method Based on Nonlocal Approximations for a Nonlinear, Extended Three‐Compartmental Model of Ethanol Metabolism in the Human Body, 2025, 0170-4214, 10.1002/mma.10858
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3185) PDF downloads(343) Cited by(67)

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog