Citation: Rinaldo M. Colombo, Mauro Garavello. Optimizing vaccination strategies in an age structured SIR model[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1074-1089. doi: 10.3934/mbe.2020057
[1] | W. O. Kermack, A. G. McKendrick, G. T. Walker, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London. Ser. A, Containing Papers of a Mathematical and Physical Character, 115 (1927), 700-721. |
[2] | H. Inaba, Age-structured sir epidemic model, in Age-Structured Population Dynamics in Demography and Epidemiology, Springer Singapore, Singapore, 2017, 287-331. |
[3] | J. D. Murray, Mathematical biology. I, vol. 17 of Interdisciplinary Applied Mathematics, 3rd edition, Springer-Verlag, New York, 2002, An introduction. |
[4] | B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. |
[5] | H. Behncke, Optimal control of deterministic epidemics, Optim. Contr. Appl. Met., 21 (2000), 269-285. |
[6] | H. Gaff, E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., 6 (2009), 469-492. |
[7] | H. R. Joshi, S. Lenhart, M. Y. Li, L. Wang, Optimal control methods applied to disease models, in Mathematical studies on human disease dynamics, vol. 410 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2006, 187-207. |
[8] | A. El-Alami Laaroussi, M. Rachik, M. Elhia, An optimal control problem for a spatiotemporal SIR model, Int. J. Dyn. Control, 6 (2018), 384-397. |
[9] | L.-M. Cai, C. Modnak, J. Wang, An age-structured model for cholera control with vaccination, Appl. Math. Comput., 299 (2017), 127-140. |
[10] | G. B. Folland, Real analysis, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1984, Modern techniques and their applications, A Wiley-Interscience Publication. |
[11] | R. M. Colombo, M. Garavello, Well posedness and control in a nonlocal sir model, 2019. Available from: http://arxiv.org/abs/1910.07389, Preprint, arXiv 1910.07389. |
[12] | R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. |
[13] | A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer-Verlag, New York, 2000. |