Citation: Yoon-gu Hwang, Hee-Dae Kwon, Jeehyun Lee. Feedback control problem of an SIR epidemic model based on the Hamilton-Jacobi-Bellman equation[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2284-2301. doi: 10.3934/mbe.2020121
[1] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700-721. |
[2] | J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008), 118-130. |
[3] | F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3 (2006), 1. |
[4] | H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. |
[5] | M. D. l. Sen, A. Ibeas, S. Alonso-Quesada, A time-varying SIS epidemic model with incidence rate depending on the susceptible and infective populations with eventual impulsive effects, Appl. Math. Comput., 219 (2013), 5516-5536. |
[6] | H. M. Yang, A. R. R. Freitas, Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines, Math. Biosci. Eng., 16 (2019), 3195-3214. |
[7] | M. D. l. Sen, A. Ibeas, S. Alonso-Quesada, On vaccination controls for the SEIR epidemic model, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2637-2658. |
[8] | Y. Shang, Global stability of disease-free equilibria in a two-group SI model with feedback control, Nonlinear Anal. Model. Control, 20 (2015), 501-508. |
[9] | A. Lahrouz, H. El Mahjour, A. Settati, A. Bernoussi, Dynamics and optimal control of a non-linear epidemic model with relapse and cure, Phys. A, 496 (2018), 299-317. |
[10] | J. Lee, J. Kim, H. D. Kwon, Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates, J. Theor. Biol., 317 (2013), 310-320. |
[11] | S. Lee, G. Chowell, Exploring optimal control strategies in seasonally varying flu-like epidemics, J. Theor. Biol., 412 (2017), 36-47. |
[12] | S. Lee, M. Golinski, G. Chowell, Modeling optimal age-specific vaccination strategies against pandemic influenza, Bull. Math. Biol., 74 (2012), 958-980. |
[13] | K. Li, G. Zhu, Z. Ma, L. Chen, Dynamic stability of an SIQS epidemic network and its optimal control, Commun. Nonlinear Sci. Numer. Simul., 66 (2019), 84-95. |
[14] | T. Yu, D. Cao, S. Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 54-70. |
[15] | B. M. Adams, H. T. Banks, M. Davidian, H. D. Kwon, H. T. Tran, S. N. Wynne, et al., HIV dynamics: modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10-49. |
[16] | K. Blayneh, Y. Cao, H. D. Kwon, Optimal control of vector-borne diseases: treatment and prevention, Discret. Contin. Dyn. Syst. B, 11 (2009), 587-611. |
[17] | T. S. Jang, J. Kim, H. D. Kwon, J. Lee, Hybrid on-off controls for an HIV model based on a linear control problem, J. Korean Math. Soc., 52 (2015), 469-487. |
[18] | E. Jung, S. Lenhart, Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discret. Contin. Dyn. Syst. Ser. B, 2 (2002), 473-482. |
[19] | W. H. Fleming, R. W. Rishel, Deterministic and stochastic optimal control, Springer Science & Business Media, 1 (2012). |
[20] | B. D. Anderson, J. B. Moore, Optimal control: Linear quadratic methods, Courier Corporation, 2007. |
[21] | H. Banks, B. Lewis, H. Tran, Nonlinear feedback controllers and compensators: A state-dependent Riccati equation approach, Comput. Optim. Appl., 37 (2007), 177-218. |
[22] | S. Beeler, H. Tran, H. Banks, Feedback control methodologies for nonlinear systems, J. Optim. Theory Appl., 107 (2000), 1-33. |
[23] | C. P. Mracek, J. R. Cloutier, Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method, Int. J. Robust Nonlin. Control, 8 (1998), 401-433. |
[24] | C. Rodrigues, R. Kuiava, R. Ramos, Design of a linear quadratic regulator for nonlinear systems modeled via norm-bounded linear differential inclusions, IFAC Proc. Vol., 44 (2011), 7352-7357. |
[25] | P. D. Giamberardino, D. Iacoviello, LQ control design for the containment of the HIV/AIDS diffusion, Control Eng. Pract., 77 (2018), 162-173. |
[26] | R. Bellman, The theory of dynamic programming, Bull. Am. Math. Soc., 60 (1954), 503-515. |
[27] | M. G. Crandall, P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277 (1983), 1-42. |
[28] | Y. Achdou, G. Barles, H. Ishii, G. L. Litvinov, Hamilton-Jacobi equations: Approximations, numerical analysis and applications, Lect. Notes Math., 10 (2013). |
[29] | M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-JacobiBellman equations, Springer Science & Business Media, 2008. |
[30] | B. Z. Guo, B. Sun, A new algorithm for finding numerical solutions of optimal feedback control, IMA J. Math. Control Inf., 26 (2009), 95-104. |
[31] | B. Z. Guo, B. Sun, Dynamic programming approach to the numerical solution of optimal control with paradigm by a mathematical model for drug therapies of HIV/AIDS, Optim. Eng., 15 (2014), 119-136. |
[32] | H. Guo, H. Fu, J. Zhang, A splitting positive definite mixed finite element method for elliptic optimal control problem, Appl. Math. Comput., 219 (2013), 11178-11190. |
[33] | S. Wang, F. Gao, K. Teo, An upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations, IMA J. Math. Control Inf., 17 (2000), 167-178. |
[34] | S. Wang, L. S. Jennings, K. L. Teo, Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method, J. Glob. Optim., 27 (2003), 177-192. |
[35] | J. Yong, X. Y. Zhou, Stochastic Controls:Hamiltonian Systems and HJB Equations, Springer Science & Business Media, 43 (1999). |
[36] | C. S. Huang, S. Wang, K. Teo, Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics, Nonlinear Anal. Theory, Methods Appl., 40 (2000), 279-293. |
[37] | M. Chang, K. Krishna, A successive approximation algorithm for stochastic control problems, Appl. Math. Comput., 18 (1986), 155-165. |
[38] | M. D. Gunzburger, Perspectives in flow control and optimization, SIAM, 5 (2003). |
[39] | T. Jang, H. D. Kwon, J. Lee, Free terminal time optimal control problem of an HIV model based on a conjugate gradient method, Bull. Math. Biol., 73 (2011), 2408-2429. |