Citation: Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally)[J]. Mathematical Biosciences and Engineering, 2018, 15(1): 1-20. doi: 10.3934/mbe.2018001
[1] | [ H. Abbey, An examination of the Reed-Frost theory of epidemics, Human Biology, 24 (1952): 201-233. |
[2] | [ S. Aniţa,V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model, Nonlinear Anal. Real World Appl., 3 (2002): 453-464. |
[3] | [ S. Aniţa,V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlinear Anal. Real World Appl., 10 (2009): 2026-2035. |
[4] | [ S. Aniţa,V. Capasso, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review, Mathematical Methods in Applied Sciences, 33 (2010): 1235-1244. |
[5] | [ S. Aniţa,V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Anal. Real World Appl., 13 (2012): 725-735. |
[6] | [ S. Aniţa,V. Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, Discrete and Continuous Dynamical Systems, Series B, 17 (2012): 1673-1684. |
[7] | [ S. Aniţa and V. Capasso, Regional control in optimal harvesting of population dynamics, Submitted, 2015. |
[8] | [ V. Arnăutu,V. Barbu,V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optimiz., 20 (1989): 297-317. |
[9] | [ D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (W. E. Fitzgibbon and A. F. Walker eds. ) Pitman, London, 1977, 1-23. |
[10] | [ P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applications, Nonlinear Anal. RWA, 8 (2007): 980-996. |
[11] | [ N. T. J. Bailey, A simple stochastic epidemic, Biometrika, 37 (1950): 193-202. |
[12] | [ M. S. Bartlett, Some evolutionary stochastic processes, J. Roy. Stat. Soc. Ser. B, 11 (1949): 211-229. |
[13] | [ E. Beretta,V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers and Mathematics in Applications, 12 (1986): 677-694. |
[14] | [ D. Bernoulli, Réflexions sur les avantages de l'inoculation, Mercure de France, June (1760): 173-190. |
[15] | [ D. J. Bradley, Epidemiological models Theory and reality, in The Population Dynamics of Infectious Diseases, (R. M. Anderson Ed. ) Chapman and Hall, London-New York, 2008, 320-333. |
[16] | [ F. Brauer, Some infectious disease models with population dynamics and general contact rates, Differential and Integral Equations, 3 (1990): 827-836. |
[17] | [ J. Brownlee, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh, 31 (1912): 262-289. |
[18] | [ S. Busenberg,K. L. Cooke,M. Iannelli, Endemic thresholds and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988): 1379-1395. |
[19] | [ V. Capasso, Mathematical Structures of Epidemic Systems (corrected 2nd printing), Lecture Notes Biomath. , vol. 97, Springer-Verlag, Heidelberg, 2008. |
[20] | [ V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978): 274-284. |
[21] | [ V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system, J. Math. Anal. Appl., 103 (1984): 575-588. |
[22] | [ V. Capasso,D. Bakstein, null, An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology and Medicine, Third Edition, Birkhäuser, New York, 2015. |
[23] | [ V. Capasso and B. Forte, Model building as an inverse problem in Biomathematics, in Frontiers in Mathematical Biology, (S. A. Levin Ed. ) Lecture Notes in Biomathematics, SpringerVerlag, Heidelberg, 100 (1994), 600-608. |
[24] | [ V. Capasso,K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quarterly Appl. Math., 46 (1988): 431-450. |
[25] | [ V. Capasso,L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981): 173-184. |
[26] | [ V. Capasso,L. Maddalena, Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models, Math. Comput. Simulation, 24 (1982): 540-547. |
[27] | [ V. Capasso,L. Maddalena, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics, SIAM J. Appl. Math., 43 (1983): 417-427. |
[28] | [ V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d'Epidemiologie et de la Sante' Publique, 27 (1979), 121-132; Errata corrige, 28 (1980), p390. |
[29] | [ V. Capasso,G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978): 43-61. |
[30] | [ V. Capasso and H. R. Thieme, A threshold theorem for a reaction-diffusion epidemic system, in Differential Equations and Applications (R. Aftabizadeh, ed. ), Ohio Univ. Press, Athens, OH, 1989,128-133. |
[31] | [ V. Capasso,R. E. Wilson, Analysis of a reaction-diffusion system modelling man-environment-man epidemics, SIAM J. Appl. Math., 57 (1997): 327-346. |
[32] | [ C. Castillo-Chavez,K. L. Cooke,W. Huang,S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models, J. Math. Biol., 27 (1989): 373-398. |
[33] | [ C. Castillo-Chavez, K. L. Cooke, W. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models, in Mathematical and Statistical Approaches to AIDS Epidemiology, (C. Castillo-Chavez ed. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 83 (1989), 200-217. |
[34] | [ C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001): 1-14. |
[35] | [ K. Dietz, Introduction to McKendrick (1926) Applications of mathematics to medical problems, in Breakthroughs in Statistics Volume Ⅲ, (S. Kotz and N. L. Johnson eds) SpringerVerlag, Heidelberg, 1997, 17-26. |
[36] | [ K. Dietz, Mathematization in sciences epidemics: The fitting of the first dynamic models to data, J. Contemp. Math. Anal., 44 (2009): 97-104. |
[37] | [ A. d'Onofrio,P. Manfredi,E. Salinelli, Vaccination behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theoretical Population Biology, 71 (2007): 301-317. |
[38] | [ J. L. Doob, Markoff chains-denumerable case, Trans. Am. Math. Society, 58 (1945): 455-473. |
[39] | [ En'ko, On the course of epidemics of some infectious diseases, (Translation from Russian by K. Dietz) Int. J. Epidemiology, 18 (1989), 749-755. |
[40] | [ S. N. Ethier,T. G. Kurtz, null, Markov Processes, Characterization and Convergence, , Wiley, New York, 1986. |
[41] | [ W. Farr, Progress of epidemics, Second Report of the Registrar General, null (1840): 91-98. |
[42] | [ W. H. Frost, Some conceptions of epidemics in general, Am. J. Epidemiology, 103 (1976): 141-151. |
[43] | [ D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Physics, 22 (1976): 403-434. |
[44] | [ B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978): 525-533. |
[45] | [ W. H. Hamer, Epidemic disease in England, Lancet, 1 (1906): 733-739. |
[46] | [ A. Henrot,M. Pierre, null, Variation et Optimisation de Formes. Une Analyse Géométrique, , Springer, Berlin, 2005. |
[47] | [ O. A. van Herwaarden,J. Grasman, Stochastic epidemics: Major outbreaks and the duration of the endemic period, J. Math. Biol., 35 (1997): 793-813. |
[48] | [ H. W. Hethcote,P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991): 271-287. |
[49] | [ F. Hoppensteadt, null, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, , SIAM, Philadelphia, 1975. |
[50] | [ D. G. Kendall, Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, H. M. S. O. , London, 1965,213-225. |
[51] | [ W. O. Kermack,A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London, Ser. A, 115 (1927): 700-721. |
[52] | [ M. A. Krasnoselkii, null, Positive Solutions of Operator Equations, , Nordhooff, Groningen, 1964. |
[53] | [ M. A. Krasnoselkii, Translation Along Trajectories of Differential Equations AMS, Providence, R. I. , 1968. |
[54] | [ J. L. Lions, null, Controlabilité Exacte, Stabilisation et Perturbation de Systémes Distribués, , Masson, Paris, 1988. |
[55] | [ W. M. Liu,H. M. Hethcote,S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987): 359-380. |
[56] | [ W. M. Liu,S. A. Levin,Y. Iwasa, Influence of nonlinear incidence rate upon the behaviour of SIRS epidemiological models, J. Math. Biol., 23 (1986): 187-204. |
[57] | [ A. J. Lotka, Martini's equations for the epidemiology of immunizing diseases, Nature, 111 (1923): 633-634. |
[58] | [ G. Macdonald, The analysis of malaria parasite rates in infants, Tropical Disease Bull., 47 (1950): 915-938. |
[59] | [ E. Martini, null, Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria, , Gente, Hamburg, 1921. |
[60] | [ I. Näsell,W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure Appl. Math., 26 (1973): 395-453. |
[61] | [ A. Pugliese, An SEI epidemic model with varying population size, in Differential Equation Models in Biology, Epidemiology and Ecology, (S. Busenberg and M. Martelli eds. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 92 (1991), 121-138. |
[62] | [ M. Puma, null, Elementi per una Teoria Matematica del Contagio, , Editoriale Aeronautica, Rome, 1939. |
[63] | [ R. Ross, null, The Prevention of Malaria, London, Murray, 1911. |
[64] | [ R. E. Serfling, Historical review of epidemic theory, Human Biology, 24 (1952): 145-165. |
[65] | [ N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci., 4 (1969): 395-402. |
[66] | [ H. E. Soper, The interpretation of periodicity in disease prevalence, J. Roy. Stat. Soc., 92 (1929): 34-73. |
[67] | [ W. Y. Tan, null, Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, , World Scientific, Singapore, 2002. |
[68] | [ H. R. Thieme, null, Mathematics in Population Biology, , Princeton University Press, Princeton, N. J., 2003. |
[69] | [ E. B. Wilson,J. Worcester, The law of mass action in epidemiology, Proc. Nat. Acad. Sci., 31 (1945): 24-34. |