Citation: Tsanou Berge, Samuel Bowong, Jean Lubuma, Martin Luther Mann Manyombe. Modeling Ebola Virus Disease transmissions with reservoir in a complex virus life ecology[J]. Mathematical Biosciences and Engineering, 2018, 15(1): 21-56. doi: 10.3934/mbe.2018002
[1] | [ C. Althaus, Estimating the reproduction number of Ebola (EBOV) during outbreak in West Africa, PLOS Currents, 2014. |
[2] | [ R. M. Anderson,R. M. May, null, Infectious Diseases of Humans: Dynamics and Control, , Oxford University Press, Oxford, England, 1991. |
[3] | [ S. Anita,V. Capasso, On the stabilization of reaction-diffusion systems modeling a class of man-environment epidemics: A review, Math. Meth. Appl. Sci., 33 (2010): 1235-1244. |
[4] | [ S. Anita,V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Analysis: Real World Applications, 13 (2012): 725-735. |
[5] | [ A. A. Arata and B. Johnson, Approaches toward studies on potential reservoirs of viral haemorrhagic fever in southern Sudan (1977), In Ebola Virus Haemorrhagic Fever (Pattyn, S. R. S. , ed. ), (1978), 191-200. |
[6] | [ S. Baize,D. Pannetier,L. Oestereich, Emergence of Zaire Ebola Virus Disease in Guinea -Preliminary Report, New England Journal of Medecine, null (2014). |
[7] | [ S. Baize,D. Pannetier,L. Oestereich, Emergence of Zaire Ebola Virus Disease in Guinea -Preliminary Report, New England Journal of Medecine, null (2014). |
[8] | [ M. Bani-Yabhoub, Reproduction numbers for infections with free-living pathogens growing in the environment, J. Biol. Dyn., 6 (2012): 923-940. |
[9] | [ T. Berge,J. Lubuma,G. M. Moremedi,N. Morris,R. K. Shava, A simple mathematical model for Ebola in Africa, J. Biol. Dyn., 11 (2016): 42-74. |
[10] | [ K. Bibby, Ebola virus persistence in the environment: State of the knowledge and research needs, Environ. Sci. Technol. Lett., 2 (2015): 2-6. |
[11] | [ M. C. J. Bootsma,N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in US cities, PNAS, 104 (2007): 7588-7593. |
[12] | [ V. Capasso,S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the european mediterranean region, Revue dépidémiologié et de santé publiqué, 27 (1979): 121-132. |
[13] | [ C. Castillo-Chavez,K. Barley,D. Bichara,D. Chowell,E. Diaz Herrera,B. Espinoza,V. Moreno,S. Towers,K. E. Yong, Modeling ebola at the mathematical and theoretical biology institute (MTBI), Notices of the AMS, 63 (2016): 366-371. |
[14] | [ C. Castillo-Chavez and H. Thieme, Asymptotically autonomous epidemic models, in: O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds. ), Math. Pop. Dyn. : Analysis of Heterogeneity, Springer, Berlin, 1995, p33. |
[15] | [ N. Chitnis,J. M. Hyman,J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of mathematical model, Bull. Math. Biol., 70 (2008): 1272-1296. |
[16] | [ G. Chowell, The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Biol., 229 (2004): 119-126. |
[17] | [ C. T. Codeço, Endemic and epidemic dynamic of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001): p1. |
[18] | [ M.-A. de La Vega,D. Stein,G. P. Kobinger, Ebolavirus evolution: Past and present, PLoS Pathog, 11 (2015): e1005221. |
[19] | [ O. Diekmann,J. A. P. Heesterbeek,M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010): 873-885. |
[20] | [ P. van den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48. |
[21] | [ A. d'Onofrio,P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theor. Biol., 256 (2009): 473-478. |
[22] | [ M. Eichner,S. F. Dowell,N. Firese, Incubation period of Ebola Hemorrhagic Virus subtype Zaire, Osong Public Health and Research Perspectives, 2 (2011): 3-7. |
[23] | [ B. Espinoza, V. Moreno, D. Bichara and C. Castillo-Chavez, Assessing the Efficiency of Cordon Sanitaire as a Control Strategy of Ebola, arXiv: 1510.07415v1 [q-bio. PE] 26 Oct 2015. |
[24] | [ F. O. Fasina, A. Shittu, D. Lazarus, O. Tomori, L. Simonsen, C. Viboud and G. Chowell, Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014 Eurosurveill, 19 (2014), 20920, Available online: https://www.ncbi.nlm.nih.gov/pubmed/25323076. |
[25] | [ H. Feldmann, Ebola virus ecology: A continuing mystery, Trends Microbiol, 12 (2004): 433437. |
[26] | [ A. Groseth,H. Feldmann,J. E. Strong, The ecology of ebola virus, TRENDS in Microbiology, 15 (2007): 408-416. |
[27] | [ J. K. Hale, null, Ordinary Differential Equations, Pure and Applied Mathematics, , John Wiley & Sons, New York, 1969. |
[28] | [ A. M. Henao-Restrepo, Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial, The Lancet, 386 (1996): 857-866. |
[29] | [ H. W. Hethcote,H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations, Math. Biosci., 75 (1985): 205-227. |
[30] | [ M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988): 1-53. |
[31] | [ B. Ivorra,D. Ngom,A. M. Ramos, Be-CoDiS: A mathematical model to predict the risk of human diseases spread between countries-validation and application to the 2014-2015 ebola virus disease epidemic, Bull. Math. Biol., 77 (2015): 1668-1704. |
[32] | [ M. H. Kuniholm, Bat exposure is a risk factor for Ebola virus infection. In Filoviruses: Recent Advances and Future Challenges: An ICID Global Symposium, 2006. |
[33] | [ V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems Monographs and Textbooks in Pure and Applied Mathematics, 125. Marcel Dekker, Inc. , New York, 1989. |
[34] | [ J. P. LaSalle, The Stability of Dynamical Systems Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. |
[35] | [ J. Legrand,R. F. Grais,P. Y. Boelle,A. J. Valleron,A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135 (2007): 610-621. |
[36] | [ P. E. Lekone,B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics, 62 (2006): 1170-1177. |
[37] | [ E. M. Leroy, Fruit bats as reservoirs of Ebola virus, Nature, 438 (2005): 575-576. |
[38] | [ E. M. Leroy, Multiple Ebola virus transmission events and rapid decline of central African wildlife, Science, 303 (2004): 387-390. |
[39] | [ M. Y. Li,J. R. Graef,L. Wang,J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999): 191-213. |
[40] | [ M. Y. Li,J. S. Muldowney, A geometrical approach to global-stability problems, SIAM J. Appl. Anal., 27 (1996): 1070-1083. |
[41] | [ P. Manfredi,A. d'Onofrio, null, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, , Springer, 2013. |
[42] | [ M. L. Mann Manyombe,J. Mbang,J. Lubuma,B. Tsanou, Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers, Math. Biosci. Eng, 13 (2016): 813-840. |
[43] | [ S. Marino,I. B. Hogue,C. J. Ray,D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol, 254 (2008): 178-196. |
[44] | [ D. Ndanguza, Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo, Afr. Mat., 24 (2013): 55-68. |
[45] | [ T. J. Oähea, Bat Flight and Zoonotic Viruses, Emerging Infectious Diseases, null (2014). |
[46] | [ T. J. Piercy, The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol, J. Appl. Microbiol., 109 (2010): 1531-1539. |
[47] | [ X. Pourrut, Spatial and temporal patterns of Zaire Ebola virus antibody prevalence in the possible reservoir bat species, J. Infect. Dis., 15 (2007): 176-183. |
[48] | [ H. L. Smith, Systems of ordinary differential equations which generate an order preserving flow, A survey of results, SIAM Rev., 30 (1988): 87-113. |
[49] | [ J. P. Tian,J. Wang, Global stability for cholera epidemic models, Math. Biosci., 232 (2011): 31-41. |
[50] | [ The Centers for Disease Control and Prevention, 2014-2016 Ebola outbreak in West Africa, https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html (Page last reviewed, October 21,2016). |
[51] | [ The Centers for Disease Control and Prevention, https://www.cdc.gov/vhf/ebola, (Page last reviewed, June 22,2016). |
[52] | [ S. Towers, O. Patterson-Lomba and C. Castillo-Chavez, Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak PLOS Currents Outbreaks, Sept 18,2014. |
[53] | [ B. Tsanou,S. Bowong,J. Lubuma,J. Mbang, Assessment the impact of the environmental contamination on the transmission of Ebola Virus Disease (EVD), J. Appl. Math. Comput., null (2016): 1-39. |
[54] | [ M. Vidyasagar, Decomposition techniques for large-scale systems with non-additive interactions: stability and stabilizability, IEEE Trans. Autom. Control., 25 (1980): 773-779. |
[55] | [ WHO, Ebola Response Roadmap Situation Report, 1 October 2014, http://apps.who.int/iris/bitstream/10665/135600/1/roadmapsitrep_1Oct2014_eng.pdf. |
[56] | [ WHO, Ebola virus disease. Fact sheet No 103, Updated January 2016, http://www.who.int/mediacentre/factsheets/fs103/en/ |
[57] | [ WHO Ebola Response Team, Ebola Virus Disease in West Africa -The First 9 Months of the Epidemic and Forward Projections, N. Engl. J. Med, null (2014). |
[58] | [ WHO, Unprecedented number of medical staff infected with Ebola, http://www.who.int/mediacentre/news/ebola/25-august-2014/en/. |
[59] | [ R. E. Wilson,V. Capasso, Analysis of a reaction-diffusion system modeling manenvironment-man epidemics, SIAM J. Appl. Math., 57 (1997): 327-346. |
[60] | [ D. Youkee et al. , Assessment of environmental contamination and environmental decontamination practices within an Ebola holding unit, Freetown, Sierra Leone. PLOS ONE, December 1,2015. |
[61] | [ J. Zhang,Z. Ma, Global dynamics of an SEIR epidemic model with saturating contact rate, Math. Biosci., 185 (2003): 15-32. |