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Abstract. We propose a new deterministic mathematical model for the trans-

mission dynamics of Ebola Virus Disease (EVD) in a complex Ebola virus life

ecology. Our model captures as much as possible the features and patterns
of the disease evolution as a three cycle transmission process in the two ways

below. Firstly it involves the synergy between the epizootic phase (during

which the disease circulates periodically amongst non-human primates pop-
ulations and decimates them), the enzootic phase (during which the disease

always remains in fruit bats population) and the epidemic phase (during which

the EVD threatens and decimates human populations). Secondly it takes into
account the well-known, the probable/suspected and the hypothetical trans-

mission mechanisms (including direct and indirect routes of contamination) be-

tween and within the three different types of populations consisting of humans,
animals and fruit bats. The reproduction number R0 for the full model with

the environmental contamination is derived and the global asymptotic stability
of the disease free equilibrium is established when R0 < 1. It is conjectured

that there exists a unique globally asymptotically stable endemic equilibrium
for the full model when R0 > 1. The role of a contaminated environment is as-
sessed by comparing the human infected component for the sub-model without
the environment with that of the full model. Similarly, the sub-model without

animals on the one hand and the sub-model without bats on the other hand are
studied. It is shown that bats influence more the dynamics of EVD than the an-

imals. Global sensitivity analysis shows that the effective contact rate between
humans and fruit bats and the mortality rate for bats are the most influential
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parameters on the latent and infected human individuals. Numerical simu-
lations, apart from supporting the theoretical results and the existence of a

unique globally asymptotically stable endemic equilibrium for the full model,

suggest further that: (1) fruit bats are more important in the transmission
processes and the endemicity level of EVD than animals. This is in line with

biological findings which identified bats as reservoir of Ebola viruses; (2) the

indirect environmental contamination is detrimental to human beings, while it
is almost insignificant for the transmission in bats.

1. Introduction. Since 1976, about 25 outbreaks of EVD have been declared in-
cluding the latest one in Western Africa (2014-2015) which was the most devastating
one among human populations [18, 56]. There are five known Ebola virus strains:
ZEBOV, SEBOV, ICEBOV, BDBV, REBOV [18]. Of these, the first four have
highly threatened both human and nonhuman primates, causing viral hemorrhagic
fever with case fatality rates of up to 90% [18, 50]. For instance, the most recent
and deadliest Ebola outbreak in Western Africa was caused by the ZEBOV virus
strain.

No approved treatments and homologated vaccines are currently available. How-
ever, dedicated research efforts have led to the first therapeutic trial with ZMapp
[28]. Furthermore, the VSV-ZEBOV vaccine has been found and is still in its third
experimental phase [28]. These two remarkable efforts have helped to curtain the
recent Western Africa outbreak, even though the latter effort was less decisive (due
to its late trial at the end of the West African outbreak) than the former.

Other control efforts (including rehydration, isolation, education of populations
at risk, avoidance of consumption of bush meat, practicing of safe burials) have
been implemented to stop past Ebola outbreaks. In addition to the threat EVD
poses to human health, the negative impact of EVD infection on already threatened
animal populations in Africa has come to light and led to a resurgence of efforts
to understand the complex life ecology of Ebola virus in nature [26, 51]. However,
despite considerable efforts, it remains unclear how the EVD is maintained and
transmitted in nature, and how the index case (first patient) is infected. Since
EVD is a zoonotic-borne disease (transmitted accidentally by direct contact with
infected living or dead animals), human epidemics were concomitant with epizootic
in great apes [37, 38]. Moreover, due to the fact that recent works have provided
new evidence that fruit bats might play an important role as a reservoir species
of EVD, some intricate and pending questions which are biologically relevant have
been raised:

1. Where and how does the index case (first patient) acquire the infection?
2. Do direct transmissions from bats to humans and/or nonhuman primates oc-

cur?
3. Which human behaviors expose humans to the risk of contracting EVD from

non-human sources?
4. Are fruit bats the only reservoir hosts for Ebola viruses?
5. What are the environmental factors contributing to Ebola virus transmission

to human beings and non-human primates from the reservoir species?
6. Can mathematical modeling help to understand and predict the of EVD out-

breaks in the future?

This paper focuses on the last question. We address it, with the ultimate aim to
answer the other five questions. Before moving to the modeling section, there is a
need to support and motivate these questions. Since the 1976 Sudan outbreak where
there was evidence that the index case was a worker in a cotton factory with evidence
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of bats at site, many other index cases (from 1994-2001) showed evident contacts
with bats and/or consumption of butchered great apes and/or other wildlife meat.
The synoptic Table 1 summarizes the sources for contamination of the first patient
during EVD outbreaks and highlights his/her contact with bats, dead or butchered
wildlife bush meat. The table also talks to the transmission from bat to human, from
non-human primate to human, and it illustrates how human behaviors can drive
the contamination of EVD. The issue of fruit bats being reservoir for Ebola viruses
is supported by the work [37] which has demonstrated that fruit bats bear Ebola
viruses and are not affected by the disease. Furthermore, the first four questions are
biologically investigated in [26,37,51] where the known, the probable/suspected and
the hypothetical direct transmission mechanisms (routes) of EVD are addressed.
Regarding the fifth question, the works in [9, 10, 46, 53, 60] highlight the indirect
environmental contamination route of EVD.

The complexity of the questions raised above is captured in [26,51] for the EVD
mechanisms of transmission in a complex Ebola virus life ecology as depicted in
Fig. 1 of the disease transmission diagram. This will be reflected in the construction
of our model by: (a) Taking into account the well known, the probable/suspected,
the hypothetical and the environmental transmission pathways; (b) Involving the
interplay between the epizootic phase (during which the disease circulates periodi-
cally amongst non-human primate populations and decimates them), the enzootic
phase (during which the disease always remains in fruit bat populations) and the
epidemic phase (during which the EVD threatens and decimates human popula-
tions) of the disease under consideration.

The complexity of the Ebola virus life ecology is clear from the biological studies
carried out in [26,51] (see also Ebola virus ecology and transmission therein). From
the mathematical point of view, the complexity and challenges we are confronted
with and have addressed range from the modeling of the forces of infection, the com-
putation of the reproduction number (see Eq. (8) and Remark1), the computation
of the endemic equilibrium, to the use of less standard tools (e.g. decomposition
techniques [54]) to investigate the dynamics of EVD.

Note that the recent and former EVD outbreaks have highlighted the importance
of human behavior in the transmission process [11,21,41]. For instance, there were
evidence of behavioral reaction and self-protection measures: people were scared,
they panicked and left care centers, etc... As this important feature calls for a
different modeling approach based on “Behavioral Epidemiology” developed in [41],
we are busy investigating it in another work, where self-protection measures driven
by human behavior is incorporated.

The rest of the paper is organized as follows. In Section 2 we derive the model.
The mathematical analysis starts in Section 3 with the basic properties of the model,
followed by the computation of the reproduction number R0 and the establishment
of the global asymptotic stability of the disease-free equilibrium. It ends with the
investigation of the endemic equilibrium. Section 4 deals with the model without
the environmental contamination, while the sensitivity analysis is shown in Section
5. In Section 6, we provide numerical simulations to support the theory and assess
the impact of the environmental contamination. Finally Section 8 summarizes our
findings and highlights possible extensions.
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Table 1. Routes of transmission for index case in some known
Ebola virus outbreaks.

Year Country Species Starting date Source of infection
1976 DRC Zaire September Unknown. Index case was

a mission school teacher.
1976 Sudan Sudan June Worker in a cotton factory.

Evidence of bats at site.
1977 DRC Zaire June Unknown (retrospective).
1979 Sudan Sudan July Worker in cotton factory.

Evidence of bats at site.
1994 Gabon Zaire December Gold-mining camps.

Evidence of bats at site.
1994 Ivory Coast Ivory Coast November Scientist performing autopsy

on a dead wild chimpanzee.
1995 Liberia Ivory Coast December Unknown. Refugee from civil war.
1995 DRC Zaire January Index case worked in

a forest adjoining the city.
1996 Gabon Zaire January People involved in the butchering

of a dead chimpanzee.
1996-1997 Gabon Zaire July Index case was

a hunter living in a forest camp.
2000-2001 Uganda Sudan September Unknown.
2001-2002 Gabon Zaire October Contact with dead or

butchered apes or other wildlife.
2001-2002 DRC Zaire October Contact with dead or

butchered apes or other wildlife.
2002-2003 DRC Zaire December Contact with dead or

butchered apes or other wildlife.
2003 DRC Zaire November Contact with dead or

butchered apes or other wildlife.
2004 Sudan Sudan May Unknown.
2005 DRC Zaire April unknown.
2007 DRC Zaire December Contact with dead or

butchered apes or other wildlife.
2007 Uganda Bundibugyo December Unknown.
2008 DRC Zaire December Index case was

a village chief and a hunter.
2012 Uganda Bundibugyo June Index case was a secondary

school teacher in Ibanda district.
2012 DRC Zaire June Index case was

a hunter living in a forest camp.
2013-2015 Guinea Zaire December Contact with bats or fruits

contaminated by bat droppings.
2014-2015 Liberia Zaire April Index case was

transported from Guinea.
2014-2015 Sierra Leone Zaire April A traditional healer, treating

Ebola patients from Guinea.
2014 DRC Zaire August Pregnant women who

butchered a bush animal.

2. Model formulation. To avoid confusion, bat will not be called “animal”. The
term animal is reserved for any non-human primate and/or any other wild ani-
mal that may be responsible for the transmission of EVD. Note that our model
formulation is focused essentially on non-human primates (great apes) as animal
species.

Motivated by the biological papers [25, 26, 37, 51] regarding the transmission
mechanisms and the recent mathematical works [9, 53], our model is based on the
zoonotic-borne disease setting and takes into account both direct and indirect trans-
mission routes. We distinguish three host populations: humans and animals as end
hosts and fruit bats as intermediate reservoir hosts [5,32,37,45,47]. Since the model
incorporates the indirect environmental transmission, we add the dynamics of the
concentration of free living Ebola viruses in the environment [53,56,60]. The latter
compartment should not be considered as an epidemiological class; it is regarded as
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a pool of Ebola viruses. This pool is supplied by infected humans, infected animals
and infected fruit bats with:

(i) The presence of carcasses of infected and dead animals in the forest on which
some animals can feed [56].

(ii) The manipulation of infected fruit bats and animals hunted by humans for
food.

(iii) The contaminated fruits harvested for food by humans and primates in the
forest [25,26,37].

(iv) The contaminated syringes re-used in health care centers [50,55,58].
(v) The bed linen contaminated by infected human’s stool, urine, vomits or sweat

in health care centers or in family homes of infected individuals [50,55].
(vi) The bush fruits contaminated by bats droppings [38].

2.1. The variables. As mentioned earlier, the variables include the human, the
animal, the bat (reservoir of Ebola viruses) populations and the concentration of
free living Ebola viruses in the environment. More precisely, at time t, Sh(t),
Sa(t) and Sb(t) denote the susceptible human, animal and bat compartments, re-
spectively. The symbols Ih(t), Ia(t) and Ib(t) denote the infected human, animal
and bat compartments, respectively. Since there is an intrinsic incubation period
of approximately 2-21 days (on average 8-10 days) of EVD in humans [7, 50, 55],
we introduce Eh(t), the exposed (or infected in latent stage) human individuals
class. There is a recovered class Rh(t) for humans only, because fruit bats are the
reservoir of Ebola viruses and nobody cares for infected animals (once infected,
they ultimately die). The total human, animal and bat populations at time t are,
Nh(t) = Sh(t)+Eh(t)+Ih(t)+Rh(t), Na(t) = Sa(t)+Ia(t) and Nb(t) = Sb(t)+Ib(t),
respectively. The concentration of Ebola viruses in the environment at time t, is
denoted by V (t).

2.2. Main assumptions. The model derivation is based on the following main
assumptions:

(A1) Infected humans always deposit Ebola viruses in the environment through
the routes indicated above, with which susceptible individuals can come into
contact.

(A2) Human-animal and human-bat contact rates are very low. This assumption
is motivated by the fact that the literature does not indicate clearly how the
human beings come into contact with either living animals, or the living fruit
bats.

(A3) Contacts between animals and fruit bats are frequent, occurring during com-
petition for food in the dry seasons where food (specially fruits) is scarce.

(A4) Infected fruit bats always contribute to the Ebola virus shedding in the en-
vironment. Actually, as reported in [25,26,37,38], the scarcity of food during
the dry season, compels bats to deliver allowing their placenta and blood to
contaminate fruits and leaves on which some animals (apes, duikers) feed.

(A5) The sharing of contaminated food (fruits) by animals (monkeys, duikers) and
fruit bats is possible allowing adequate contacts between these two wildlife
species.

(A6) There are not Ebola-deceased fruit bats since they are a natural reservoir of
Ebola viruses.
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(A7) Ebola-deceased humans can still infect during unsafe funeral practices, where
their corpses are manipulated (e.g. washing, autopsy, dressing-up) as it is the
case in many places in Africa [50].

(A8) Ebola-deceased animals can still infect humans, e.g., during manipulation of
bats for food [50].

(A9) Clinically Ebola-recovered men (resp. women) still transmit the disease prob-
ably through sexual intercourse (resp. breast-feeding) [50].

(A10) Ebola-infected animals do not recover since nobody cares about them.

2.3. The equations. The works in [26, 51] amongst others on the complex Ebola
virus life ecology lead to the dynamics flowchart in Fig. 1 which in turn gives the
following system of nonlinear ordinary differential equations:

dSh
dt

= Λh − (λh + µh)Sh, (1a)

dEh
dt

= λhSh − (µh + ω)Eh, (1b)

dIh
dt

= ωEh − (µh + γ) Ih, (1c)

dRh
dt

= γ(1− f)Ih − µhRh, (1d)

dV

dt
= αhIh + αaIa + αbIb − µvV, (1e)

dSa
dt

= Λa − (λa + µa)Sa, (1f)

dIa
dt

= λaSa − (µa + δa)Ia, (1g)

dSb
dt

= Λb − (λb + µb)Sb, (1h)

dIb
dt

= λbSb − µbIb. (1i)

The force of infection acting on humans is,

λh =
βhh (Ih + ξhνhγfIh + θhγ(1− f)Ih)

Nh
+
βha (1 + ξaνaδa) Ia

Nh
+
βhbIb
Nh

+
βhvV

K + V
.

(2)
It is the sum of the contributions below:
• The human-to-human force of infection

λhh =
βhh
Nh

(1 + ξhνhγf + θhγ(1− f)) Ih,

which gathers the three contamination processes by:
- infected, i.e. βhh

Nh
Ih;

- Ebola-deceased, i.e. βhh

Nh
(ξhνhγf) Ih and

- clinically recovered individuals i.e. βhh

Nh
(θhγ(1− f)) Ih.

• The animal-to-human force of infection

λha =
βha(1 + ξaνaδa)Ia

Nh
, where ξa =

1

τa
.

• The bat-to-human force of infection

λhb =
βhbIb
Nb

.
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• The environment-to-human force of infection

λhv =
βhvV

K + V
.

Similarly, the force of infection within the animal population

λa =
βaa(1 + ξaνaδa)Ia

Na
+
βabIb
Na

+
βavV

K + V
, (3)

involves the following three contributions:
• The animal-to-animal force of infection

λaa =
βaa(1 + ξaνaδa)Ia

Na
;

• The bat-to-animal force of infection

λab =
βabIb
Na

.

• The environment-to-animal force of infection

λav =
βavV

K + V
.

Finally, the force of infection in bat’s population is modeled by

λb = βbbIb +
βbvV

K + V
(4)

and consists of two contributions from:
- Within bat adequate contacts

λbb = βbbIb.

- The contact with the environment

λbv =
βbvV

K + V
.

Note that we have considered the infection through contact with environmental
free Ebola viruses. As it is the case for most models involving free-living pathogens
in the environment [3, 4, 8, 12, 17, 49, 53, 59], the environmental-related forces of in-
fection, λhv, λav and λbv are modeled using Michealis-Menten or Holling type II
functional responses. The constant K represents the minimum amount of viruses in
the environment capable of ensuring 50% chance of contracting the disease. More-
over, for the sake of simplicity, the contribution of dead animals and humans to
environment is modeled by relating them to infective individuals. This simplifica-
tion avoids the need to add compartments counting number of deceased humans
and animal carcasses in the environment.

Finally, the last equation of system (1) describes the dynamics of Ebola viruses
with shedding from humans, animals and bats. The parameters used for system (1)
and their biological interpretations are giving in Table 2. For notational simplifica-
tions let,

Φh = 1 + ξhνhγf + θhγ(1− f) , and Φa = 1 + ξaνaδa.

With this notation it is easy to check that system (1) interconnects the following
sub-models:
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• The human population sub-model

dSh
dt

= Λh −
βhhΦhShIh

Nh
− βhaΦaShIa

Nh
− βhbShIb

Nh
− βhvShV

K + V
− µhSh,

dEh
dt

=
βhhΦhShIh

Nh
+
βhaΦaShIa

Nh
+
βhbShIb
Nh

+
βhvShV

K + V
− (µh + ω)Eh,

dIh
dt

= ωEh − (µh + γ) Ih,

dRh
dt

= γ(1− f)Ih − µhRh.

(5)

• The animal population sub-model
dSa
dt

= Λa −
βaaΦaSaIa

Na
− βabSaIb

Na
− βavSaV

K + V
− µaSa,

dIa
dt

=
βaaΦaSaIa

Na
+
βabSaIb
Na

+
βavSaV

K + V
− (µa + δa)Ia.

(6)

• The bat population sub-model
dSb
dt

= Λb − βbbSbIb −
βbvSbV

K + V
− µbSb,

dIb
dt

= βbbSbIb +
βbvSbV

K + V
− µbIb.

(7)

It should be emphasized that not much is known about the bat-to-bat EVD trans-
mission. However, knowing that fruit bats settle or congregate for rest or sleep
(they live in colony), it is acceptable to assume that direct bat-to-bat contact is the
main route of transmission and can be modeled by mass action incidence.
• The evolution of free-living Ebola viruses in the environment which is modeled
by Eq. (1e).

The model presented her is a new in many respects. It extends the existing
works [1, 9, 16, 24, 35, 36, 44, 53] in the sense that it considers the three phases of
disease: the epizootic cycle in animals, the enzootic phase in fruit bats and the
epidemic phase in humans. In particular, the novelty of our model is clear from the
most recent work [9], where direct human-to-human transmission was considered
and all other sources (e.g. consumption of bush meat, manipulation of fruit bats,
indirect environmental contamination) were encompassed in a constant recruitment
of Ebola viruses in the environment. The model developed here enriches the lat-
ter by modeling this recruitment through consideration of the complex Ebola virus
life ecology, where animals and bats are explicitly involved in the EVD transmis-
sion cycle. It is therefore understandable why throughout this paper, we refer to
system (1) as the full model.

3. Theoretical analysis of the full model.

3.1. Basic properties.

3.1.1. Positivity and boundedness of solutions. For the EVD transmission
model (1) to be epidemiological meaningful, it is important to prove that all state
variables are non-negative at all time. That is, solutions of the system (1) with
non-negative initial data will remain non-negative for all time t > 0.

Theorem 3.1. Let the initial data Sh(0), Eh(0), Ih(0), Rh(0), Sa(0), Ia(0), Sb(0),
Ib(0), V (0) be non-negative. Then a solution Sh(t), Eh(t), Ih(t), Rh(t), Sa(t), Ia(t),
Sb(t), Ib(t), V (t)) of the model (1) are non-negative for all t > 0, when it exists.
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Table 2. Model constant parameters and their biological interpretation.

Symbols Biological interpretations
Λh,Λa,Λb Recruitment rate of susceptible humans, animals and bats, respectively.
µh, µa, µb Natural mortality rate of humans, animals and bats, respectively.
νh Virulence of Ebola virus in the corpse of the dead humans.
τh Mean duration of time that elapse after death before a human

cadaver is completely buried.
ξh = 1/τh Modification parameter of infectiousness due to dead human individuals.
τa Mean duration of time that elapse after death before an animal’s

cadaver is completely cleared out.
ξa = 1/τa Modification parameter of infectiousness due to dead animals individuals.
νa Virulence of Ebola virus in the corpse of dead animals.
ω Incubation rate of human individuals.
γ Removal rate from infectious compartment due to either to

disease induced death, or by recovery.
δa Death rate of infected animals.
αh, αa, αb Shedding rates of Ebola virus in the environment

by humans, animals and bats, respectively.
rh Mean duration of time that elapse before the complete clearance

of Ebola virus in humans.
θh = 1/rh Modification parameter of contact rate of recovered

humans (sexual activity of recovered).
in the semen/breast milk of a recovered man/woman.

f Proortion of removed human individuals who die due EVD (i.e. case fatality rate).
K Virus 50 % infectious dose, sufficient to cause EVD.
βhh Contact rate between susceptible humans and infected humans .
βhb Contact rate between susceptible humans and bats.
βhv Contact rate between susceptible humans and Ebola viruses.
βha Contact rate between susceptible humans and infected animals.
βbb Contact rate between susceptible bats and infectious bats.
βab Contact rate between susceptible animals and infectious bats.
βbv Contact rate between susceptible bats and and Ebola viruses.
βaa Contact rate between susceptible and infected animals.
βav Contact rate between susceptible animals and Ebola viruses.

Furthermore, if we set Λv =
αhΛh
µh

+
αaΛa
µa

+
αbΛb
µb

, then for any initial condition

such that

Nh(0) ≤ Λh
µh
, Na(0) ≤ Λa

µa
, Nb(0) ≤ Λb

µb
, V (0) ≤ Λv

µv
,

we have

Nh(t) ≤ Λh
µh
, Na(t) ≤ Λa

µa
, Nb(t) ≤

Λb
µb
, V (t) ≤ Λv

µv
, ∀t ≥ 0.

Proof. Suppose Sh(0) ≥ 0. The first equation of system (1) is equivalent to

d

dt
{Sh(t)ρ(t)} = Λhρ(t),

where ρ(t) = exp
(∫ t

0
(λh(p) + µh)dp

)
> 0 is the integrating factor. Hence, inte-

grating this last relation with respect to t, we have

Sh(t)ρ(t)− Sh(0) =

∫ t

0

Λhρ(t)dt,

so that the division of both side by ρ(t) yields

Sh(t) =

[
Sh(0) +

∫ t

0

Λhρ(t)dt

]
× ρ(t)−1 > 0.

The same arguments can be used to prove that Sa(t) > 0, Sb(t) > 0 and
Eh(t), Ih(t), Rh(t), Ia(t), Ib(t), V (t) ≥ 0 for all t > 0.
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Figure 1. Ebola Virus Disease transmission flow diagram.

Furthermore, (dNh)/dt = Λh − µhNh − γfIh ≤ Λh − µhNh. Thus, by Gronwall
inequality, we have

Nh(t) ≤ Nh(0)e−µht +
Λh
µh

(1− e−µht) and then Nh(t) ≤ Λh
µh
, ∀t ≥ 0 whenever

Nh(0) ≤ Λh
µh
. Similarly, Na(t) ≤ Λa

µa
, ∀t ≥ 0, whenever Na(0) ≤ Λa

µa
, Nb(t) ≤

Λb
µb

Nb(0) ≤ Λb
µb
.

Finally, using the fact that Ih ≤ Nh, Ia ≤ Na, Ib ≤ Nb and Gronwall inequality,

one has V (t) ≤ Λv
µv
, ∀t ≥ 0 if V (0) ≤ Λv

µv
. This completes the proof. �

Combining Theorem 3.1 with the trivial existence and uniqueness of a local
solution for the model (1), we have established the following theorem which ensures
the mathematical and biological well-posedness of system (1) (see [9], Theorem 3.3).

Theorem 3.2. The dynamics of model (1) is a dynamical system in the biological
feasible compact set

Γ =
{

(Sh, Eh, Ih, Rh, Sa, Ia, Sb, Ib, V ) ∈ R9
+ : Nh ≤ Λh

µh
, Na ≤ Λa

µa
, Nb ≤ Λb

µb
, V ≤ Λv

µv

}
3.1.2. Basic reproduction number. The disease free equilibrium (DFE) of the
model is obviously

P0 =
(
S0
h, 0, 0, 0, S

0
a, 0, S

0
b , 0, 0

)
, where S0

h =
Λh
µh
, S0

a =
Λa
µa
, S0

b =
Λb
µb
.
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To compute the basic reproduction number of the model, we use the standard
method of the next generation matrix developed in [2, 8, 19, 20]. We separate the
infected states (Eh, Ih, Rh, Ia, Ib, V ) form the uninfected states (Sh, Sa, Sb, ). Let F
and W be the vectors representing the new and transported cases into the infected
states, respectively. Thus

F =


λhSh

0
0

λaSa
λbSb

0

 and W =


(µh + ω)Eh

−ωEh + (µh + γ) Ih
−γ(1− f)Ih + µhRh

(µa + δa)Ia
µbIb

−αhIh − αaIa − αbIb + µvV

 .

The Jacobian matrices F of F and W of W evaluated at the DFE are

F =



0 βhhΦh 0 βhaΦa βhb
βhvΛh
µhK

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 βaaΦa βab
βavΛa
µaK

0 0 0 0
βbbΛb
µb

βbvΛb
µbK

0 0 0 0 0 0


and

W =


(µh + ω) 0 0 0 0 0
−ω (µh + γ) 0 0 0 0
0 −γ(1− f) µh 0 0 0
0 0 0 µa + δa 0 0
0 0 0 0 µb 0
0 −αh 0 −αa −αb µv

 , respectively.

W is a lower triangular and invertible matrix. Thus, thanks to [8], R0 is obtained
as the maximum eigenvalue of the positive matrix FW−1, where

FW−1 =



Rhhv0 Rhhv2
0 0 Rahv0 Rbhv0

βhvΛh
Kµhµv

0 0 0 0 0 0
0 0 0 0 0 0

Rhav0

βavαhΛa
Kµaµv(µh + γ)

0 Raav0 Rbav0

βavΛa
Kµaµv

Rhbv0

βbvαhω

Kµbµv(µh + γ)
0 Rabv0 Rbbv0

βbvΛb
Kµbµv

0 0 0 0 0 0


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and

Rhhv0 =
βhhΦhω

(µh + ω)(µh + γ)
+

αhβhvΛhω

Kµhµv(µh + ω)(µh + γ)
, Rbav0 =

βavΛaαb
Kµaµbµv

+
βab
µb

,

Rahv0 =
βhaΦa
µa + δa

+
βhvαaΛh

Kµhµv(µa + δa)
, Rbhv0 =

βhb
µb

+
βhvαbΛh
Kµhµbµv

,

Raav0 =
βaaΦa
µa + δa

+
βavΛaαa

Kµaµv(µa + δa)
, Rabv0 =

βbvΛbαa
Kµbµv(µa + δa)

,

Rhav0 =
βavαhΛaω

Kµaµv(µh + ω)(µh + γ)
, Rhbv0 =

βbvαhΛbω

Kµbµv(µh + ω)(µh + γ)
,

Rbbv0 =
βbbΛb
µ2
b

+
βbvΛbαb
Kµ2

bµv
, Rhhv2

0 =
βhhΦh
µh + γ

+
βhvαhΛh

Kµh(µh + γ)
.

Since zero is an eigenvalue for FW−1 of multiplicity 3, simple algebraic matrix
properties show that its non vanishing eigenvalues are those of the (3× 3) matrix

G =

 Rhhv0 Rahv0 Rbhv0

Rhav0 Raav0 Rbav0

Rhbv0 Rabv0 Rbbv0

 , (8)

Therefore,

R0 = ρ(G),

where for a square matrix M , ρ(M) denotes its the spectral radius.
Based on some of the realistic assumptions stated in subsection 2.2, the remark

below gives the explicit formula of the basic reproduction number R0 in special
cases.

Remark 1. In some cases, the explicit formula forR0 are straightforward as thrived
below.

1. In the sub-model with only human population dynamics and environmental
transmission [53], the basic reproduction number denoted by R0,hv is

R0,hv = Rhhv0 =
βhhΦhω

(µh + ω)(µh + γ)
+

αhβhvΛhω

Kµhµv(µh + ω)(µh + γ)
. (9)

If in addition, the indirect transmission is neglected (i.e. βhv = 0), then
the basic reproduction number reduces to

R0,h =
βhhΦhω

(µh + ω)(µh + γ)
. (10)

We emphasize that the basic reproduction number giving by (10) is suitable
for comparison with the basic reproduction numbers for some existing EDV
models. For instance, looking at the expression Φh, (10) is the sum of three
contributions:
(i) The contribution from infected human individuals, i.e. βhhω

(µh+ω)(µh+γ) .

(ii) The contribution from the clinically recovered individuals, i.e. βhhθhω
(µh+ω)(µh+γ) ,

where θh = γ(1−f)
rh

(see [53] for more details in such comparisons).

(iii) The contribution from Ebola-deceased individuals, i.e. βhhξhνhγfω
(µh+ω)(µh+γ) .

With the above decomposition of R0,h, it is straightforward that the envi-
ronmental contamination increases its range, such that R0,h is always larger
than the basic reproduction numbers for the few existing SEIR classical mod-
els with standard incidence forces of infection.
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2. In the sub-model without animal’s population dynamics, the basic reproduc-
tion number denoted by R0,hbv is

R0,hbv =
Rhhv0 +Rbbv0 +

√(
Rhhv0 −Rbbv0

)2
+ 4Rhbv0 Rbhv0

2
. (11)

3. In the sub-model without bat’s population dynamics, the basic reproduction
number denoted by R0,hav is

R0,hav =
Rhhv0 +Raav0 +

√(
Rhhv0 −Raav0

)2
+ 4Rhav0 Rahv0

2
. (12)

4. Suppose βbv = 0, then Rhbv0 = Rabv0 = 0 and the basic reproduction number
is

R0 = max

R0,b ;
Rhhv0 +Raav0 +

√(
Rhhv0 −Raav0

)2
+ 4Rhav0 Rbhv0

2

 . (13)

5. If βbv = βav = 0, then R0 simply becomes

R0 = max {R0,hv ; R0,a ; R0,b} (14)

where R0,hv is given in (9) and

R0,a =
βaaΦa
δa + µa

, R0,b =
βbbΛb
µ2
b

(15)

are the intra-specific basic reproduction numbers of the animal’s population
and bat’s population without the environmental transmission, respectively
and R0,hv is the intra-specific basic reproduction number in the human pop-
ulation with the environmental transmission.

3.2. Stability of the disease-free equilibrium. Using Theorem 2 in [20], the
following result is established:

Lemma 3.3. The DFE of system (1) is LAS whenever R0 < 1, and unstable
whenever R0 > 1.

The epidemiological implication of Lemma 3.3 is that EVD can be eliminated
from the community when R0 < 1 and the initial sizes of the sub-populations
in the model are in the basin of attraction of the DFE P0. But, for the disease
to be eliminated independently of the initial sizes of sub-populations, the global
asymptotic (GAS) stability of the DFE must be established when R0 < 1. This is
the substance of the following theorem.

Theorem 3.4. The DFE P0 of system (1) is GAS if R0 < 1 in Γ.

Proof. Let x = (Eh, Ih, Rh, Ia, Ib, V ) and y = (Sh, Sa, Sb) be the disease com-
partments (infected) and uninfected states, respectively. Then system (1) can be
re-written in the form 

dx

dt
= (F −W )x− f(x, y),

dy

dt
= g(x, y),

(16)
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where F and W are giving above,

f(x, y)

=



(Nh − Sh)

[
βhhΦhIh + βhaΦaIa

Nh
+ βhbIb

]
+ βhvV

(
Λh
µhK

− Sh
K + V

)
0
0

(Na − Sa)

[
βaaΦaIa + βabIb

Na

]
+ βavV

(
Λa
µaK

− Sa
K + V

)
βbbIb

(
Λb
µb
− Sb

)
+ βbvV

(
Λb
µbK

− Sb
K + V

)
0


,

and

g(x, y) =

Λh − λhSh − µhSh
Λa − λaSa − µaSa
Λb − λbSb − µbSb

 .

It is straightforward that f(x, y) ≥ 0 for all (x, y) ∈ Γ. Therefore (dx)/dt ≤
(F −W )x. We then consider the following auxiliary linear subsystem from (16):

dx̂

dt
= (F −W ) x̂. (17)

From Theorem 2 in [20], we have R0 < 1 ⇐⇒ σ(F −W ) < 0, where, for a square
matrix M , σ(M) denotes its stability modulus. So, when R0 < 1, the eigenvalues of
F−W all have negative real parts. Therefore, non-negative solutions of (17) are such

that limt→+∞ x̂ = 0, or equivalently limt→+∞ Êh = limt→+∞ Îh = limt→+∞ Îa =

limt→+∞ Îb = limt→+∞ V̂ = 0. By the standard comparison principle [33, 48]
and the non-negativity of x, non-negative solutions of (1) satisfy limt→+∞Eh =
limt→+∞ Ih = limt→+∞ Ia = limt→+∞ Ib = limt→+∞ V = 0. Therefore, since
limt→+∞ x = 0, system (1) is an asymptotically autonomous system [14] (Theorem
2.5) with the limit system: 

dSh
dt

= Λh − µhSh,
dSa
dt

= Λa − µaSa,
dSb
dt

= Λb − µbSb.

(18)

It is straightforward that the linear system (18) has a unique equilibrium given by
(S0
h, S

0
a, S

0
b ) which is globally asymptotically stable. This completes the proof. �

Remark 2. To extend this global result in the case when R0 = 1 (which we do
not address here), the construction of a suitable Lyapunov function and the use of
LaSalle’ Invariance Principle are necessary.

�

3.3. Existence of endemic equilibrium of model (1). In this section, we in-
vestigate the existence of equilibrium points other than the disease free equilibrium,
namely possible boundary equilibrium points and interior equilibria. First of all,
let us give some useful remarks.
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Assume that an equilibrium is such that Ib = 0, then from Eqs. (1h) and (1i),
V = 0, and Ia = 0. Using these statements in Eqs. (1b), (1c) and (1d) gives
Ih = Eh = Rh = 0. Thus, the said equilibrium point is disease free.

Similarly, if an equilibrium of (1) is such that Ia = 0, then from Eq. (1e),
Ia = V = 0 and from Eq. (1i), one has Ih = 0. Replacing these values in Eqs. (1b),
(1c) and (1d) yields Ih = Eh = Rh = 0 and the said equilibrium point is disease
free as well.

Obviously, if an equilibrium of (1) is such that V = 0, then from Eq. (1i),
Ih = Ia = Ib = 0. Introducing these in Eqs.(1b), (1c) and (1d) leads to the
Eh = Rh = 0, and once more, the corresponding equilibrium is disease free. All in
all, the only boundary equilibrium point for system (1) where the disease absent in
the human population is the disease free equilibrium.

Conversely, assume the human population is disease free, then the free virus
concentration V = 0, and from Eq.(1i), we have Ia = Ib = 0. Thus, the full system
is disease free. Note that, the non existence of boundary equilibria is due to the
fact the disease transmission “one way” (that is, from animals and bats to humans
and not the other way round).

As a consequence, we have proven the following result:

Lemma 3.5. System (1) has no other boundary equilibrium than the disease-free
equilibrium.

This lemma is very important as it excludes the possibility for the full model (1)
to exhibit non trivial boundary equilibrium points. This suggests that the full
model could have exactly one interior (endemic) equilibrium with the disease being
present in all the populations under consideration. This, together with the existence
and uniqueness of interior equilibrium for some system (1)-related sub-models [9],
motivates the following conjecture that we make.

Conjecture 1. Assume that R0 > 1 for system (1). Then there exists a unique
interior (endemic) equilibrium.

The stability of the endemic equilibrium will be shown numerically at a later
stage.

Remark 3. Actually, Conjecture 1 could be addressed in a separate work, by
reducing the finding of equilibria to a fixed-point problem and apply a suitable fixed-
point theorem for a multi-variable and sub-linear function for monotone dynamical
systems or for systems of ordinary differential equations which generate an order
preserving flow [29,30,48].

In order to investigate the effects of the environmental contamination on the
transmission of EVD, it is reasonable to consider the sub-model of system (1) with-
out the environment compartment. Note that, even though the full model (which
couples many subsystems) could have two equilibria (namely, the disease free and
the interior equilibria), it is not obvious that all its sub-models will exhibit the
same property since the coupling can reduce or increase for example the number of
equilibrium points. Below is the sub-model involving only human, animal and bat
populations, but excluding the environment influence.

4. The full model (1) without the environmental contamination. Here the
environmental transmission is neglected. This assumption reflects the disease trans-
mission cycles in [26, 51], where the indirect contamination is not explicitly men-
tioned. This amounts to getting rid of the last terms in Eqs. (2)-(4) of the forces
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of infection. The model in this setting reads therefore:

dSh
dt

= Λh −
βhhΦhShIh

Nh
− βhaΦaShIa

Nh
− βhbShIb

Nh
− µhSh, (19a)

dEh
dt

=
βhhΦhShIh

Nh
+
βhaΦaShIa

Nh
+
βhbShIb
Nh

− (µh + ω)Eh, (19b)

dIh
dt

= ωEh − (µh + γ) Ih, (19c)

dRh
dt

= γ(1− f) Ih − µhRh, (19d)

dSa
dt

= Λa −
βaaΦaSaIa

Na
− βabSaIb

Na
− µaSa, (19e)

dIa
dt

=
βaaΦaSaIa

Na
+
βabSaIb
Na

− (µa + δa)Ia, (19f)

dSb
dt

= Λb − βbbSbIb − µbSb, (19g)

dIb
dt

= βbbSbIb − µbIb. (19h)

The corresponding basic reproduction for this model is easily computed as

R0,hab = max {R0,h , R0,a , R0,b} (20)

where,

R0,h =
βhhΦhω

(µh + ω)(µh + γ)
, R0,a =

βaaΦa
µa + δa

and R0,b =
βbbΛb
µ2
b

. (21)

Actually, R0,h, R0,a and R0,b are the intra-specific basic reproduction numbers
for human, animal and bat sub-populations given earlier by Eq. (10) and Eq. (15),
respectively.

Remark 4. Note that the non-negative matrix G in (8) has diagonal entries
Rhhv0 , Raav0 and Rbbv0 that are larger than R0,h, R0,a and R0,b, respectively. This,
together with the fact that the spectral radius of a non-negative matrix is an in-
creasing function of its entries yields

R0 = ρ(G) ≥ R0,hab.

Consequently, the indirect environmental contamination enhances the transmissi-
bility of EVD, and thus it increases the epidemic/endemic level of the disease.

The dynamics of sub-system (19) are confined in the biological feasible compact
set subset of Γhab given by

Γhab =

{
(Sh, Eh, Ih, Rh, Sa, Ia, Sb, Ib) ∈ R5

+ : Nh ≤
Λh
µh
, Na ≤

Λa
µa
, Nb ≤

Λb
µb

}
.

(22)
Sub-model (19) is triangular. Indeed the variables (Sh, Eh, Ih, Rh) do not appear in
the last fourth equations. Moreover, the variables (Sa, Ia) do not appear in the last
two equations. Therefore, in order to address the long run behavior of system (19),
we shall make use of the decomposition techniques by applying repeatedly the fol-
lowing theorem [54].
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Theorem 4.1. ( [54], Theorem 3.1) Consider the system

dx

dt
= f(x), x ∈ Rn,

dy

dt
= g(x, y), x ∈ Rn, y ∈ Rm,

with right-hand side of class C1,
and (x∗, y∗) an equilibrium point, i.e., f(x∗) = 0 = g(x∗, y∗).

(23)

1. If x∗ is globally asymptotically stable (GAS) in Rn for subsystem
dx

dt
= f(x)

and if y∗ is GAS in Rm for the subsystem
dy

dt
= g(x∗, y), then (x∗, y∗) is

(locally) asymptotically stable for system (23).
2. Moreover, if all the trajectories of system (23) are forward bounded, then

(x∗, y∗) is GAS for the system (23).

In order to apply Theorem 4.1, we need to study some sub-systems of Eq. (19).

4.1. Dynamics of the bat sub-model (19g)-(19h). We give here the long run
behavior of the sub-model

dSb
dt

= Λb − βbbSbIb − µbSb,
dIb
dt

= βbbSbIb − µbIb,
(24)

by establishing the global stability of its equilibrium points. Obviously this sys-
tem (24) has two equilibria; namely, the disease-free equilibrium P 0

b = (S0
b , I

0
b ),

whose coordinates are

S0
b =

Λb
µb
, I0

b = 0

and the endemic equilibrium

P b =
(
Sb, Ib

)
,

which exists whenever R0,b > 1 and whose components are

Sb =
µb
βbb

, Ib =
µb (R0,b − 1)

βbb
. (25)

Obviously the dynamics of sub-model (24) are confined in the biological feasible
compact set

Ωb =

{
(Sb, Ib) ∈ R2

+ : Sb + Ib ≤
Λb
µb

}
.

Looking at model (24) in which the mass action law is applied, it is standard to
deduce from the Lyapunov-LaSalle techniques its asymptotic behavior summarized
in the result below.

Proposition 1. The following statements hold:

• If R0,b ≤ 1, then the disease-free equilibrium P 0
b for subsystem (24) is GAS.

It is unstable whenever R0,b > 1.

• If R0,b > 1, then the equilibrium P b is GAS.
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4.2. Dynamics of the animal sub-model (19e)-(19f) with the bat population
at equilibrium points. Here, we consider the subsystem (19e)-(19f)

dSa
dt

= Λa −
βaaΦaSaIa

Na
− βabSaIb

Na
− µaSa,

dIa
dt

=
βaaΦaSaIa

Na
+
βabSaIb
Na

− (µa + δa)Ia.
(26)

The dynamics of sub-model (26) are confined in the biological feasible compact set

Ωa =

{
(Sa, Ia) ∈ R2

+ : Sa + Ia ≤
Λa
µa

}
.

Using the global asymptotic stability of equilibria for subsystem (24), the following
two subsystems will be considered.

4.2.1. Dynamics of (26) with the bat population at equilibrium point P 0
b . The vari-

ables Sb and Ib are substituted in (26) by their corresponding values at the disease-
free equilibrium P 0

b . This leads us to the system
dSa
dt

= Λa −
βaaΦaSaIa

Na
− µaSa,

dIa
dt

=
βaaΦaSaIa

Na
− (µa + δa)Ia.

(27)

Direct calculations show that model (27) has two possible non-negative equilibrium

states: the disease-free equilibrium P 0
a =

(
S0
a =

Λa
µa
, I0
a = 0

)
and a unique endemic

equilibrium P a =
(
Sa, Ia

)
, with
Sa =

Λa
µa + (µa + δa)(R0,a − 1)

,

Ia =
Λa (R0,a − 1)

µa + (µa + δa)(R0,a − 1)
.

We have the following proposition:

Proposition 2. The following statements are satisfied.

• If R0,a ≤ 1, then for the subsystem (27), the disease free equilibrium P 0
a is

GAS. It is unstable whenever R0,a > 1.

• When R0,a > 1, there exists an unique endemic equilibrium P a which is GAS.

Proof. The GAS of the disease-free equilibrium P 0
a is established using the quadratic

Lyapunov function

V0(Sa, Ia) =
1

2
I2
a .

The directional derivative of V0 towards the vector field given in the right-hand side
of (27) is

V̇0(Sa, Ia) =
[βaΦaSa − (µa + δa)Na] I2

a

Na
,

= − (µa + δa) [Ia + (R0,a − 1)Sa] I2
a

Na
.

Thus, V̇0 ≤ 0 whenever R0,a ≤ 1. Observe that V̇0(Sa, Ia) = 0 if and only if,
either Ia = 0 or R0,a = 1 and Ia = 0. In both cases, it is easy to see that the

largest invariant set contained in
{
V̇0(Sa, Ia) = 0

}
is reduced to the disease-free

equilibrium P 0
a . Hence, by LaSalle Invariance Principle [34], P 0

a is GAS.
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For the GAS of the endemic equilibrium P a, we propose the following Lyapunov
function candidate.

Q(Sa, Ia) = (Sa + Ia)− (Sa + Ia)− (Sa + Ia) ln

(
Sa + Ia

Sa + Ia

)
+ k

(
Ia − Ia − Ia ln

Ia

Ia

)
,

= Na −Na −Na ln
Na

Na

+ k

(
Ia − Ia − Ia ln

Ia

Ia

)
,

defined in the set {(Sa, Ia) ∈ Ωa : Sa > 0, Ia > 0}. The positive constant k will be
determined shortly. Since (Sa, Ia) is an equilibrium of (27) we have

Λa = µaNa − δaIa, (µa + δa) =
βaaΦaSa

Na

.

With this in mind and the fact that

Sa
Sa + Ia

− Sa

Sa + Ia
=
Ia(Sa − Sa)− Sa(Ia − Ia)

(Sa + Ia)(Sa + Ia)
,

the directional derivative Q̇ of Q towards the vector field given in the right-hand
side of (27) is

Q̇ = −µa(Sa − Sa)2

Sa + Ia
−
(
µa + δa +

kβaaΦaSa

Sa + Ia

)
(Ia − Ia)2

Sa + Ia
,

−
(

2µa + δa −
kβaaΦaIa

Sa + Ia

)
(Ia − Ia)(Sa − Sa)

Sa + Ia
.

Choose the constant k such that

2µa + δa −
kβaaΦaIa

Sa + Ia
= 0,

or equivalently

k =
(2µa + δa)Sa + Ia

βaaΦaIa
.

Thus, the directional derivative of Q becomes

Q̇ = −µa(Sa − Sa)2

Sa + Ia
−
(
µa + δa +

kβaaΦaSa

Sa + Ia

)
(Ia − Ia)2

Sa + Ia
,

from which we can see clearly that Q̇ < 0 except at the endemic equilibrium where
it is zero. Therefore, P a is GAS.

4.2.2. Dynamics of (26) with the bat population at equilibrium point P b. Sub-
model (26) is considered when the bat population is at endemic state P b. That
is the variables Sb and Ib are replaced in (26) by Sb and Ib, respectively. This gives
to the following subsystem:

dSa
dt

= Λa −
βaaΦaSaIa

Na
− βabSaIb

Na
− µaSa,

dIa
dt

=
βaaΦaSaIa

Na
+
βabSaIb
Na

− (µa + δa)Ia.

(28)
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Since Ib > 0, (28) has no disease free equilibrium. We study the existence of
endemic equilibria.
Let Db be defined by

Db = βabIb. (29)

Êa =
(
Ŝa, Îa

)
is an equilibrium point of (28) if and only if

Λa −

(
βaaΦaÎa +Db

)
Ŝa

N̂a
− µaŜa = 0,(

βaaΦaÎa +Db

)
Ŝa

N̂a
− (µa + δa)Îa = 0.

(30)

Set

λ̂a =
βaaΦaÎa +Db

N̂a
. (31)

Then, from (30) and (31), we have

Ŝa =
Λa

µa + λ̂a
, Îa =

Λaλ̂a

(µa + δa)
(
µa + λ̂a

) , N̂a =
Λa

(
µa + δa + λ̂a

)
(µa + δa)

(
µa + λ̂a

) . (32)

Substituting (32) into (31) yields

λ̂a =
βaaΦaΛaλ̂a +Db (µa + δa)

(
µa + λ̂a

)
Λa

(
µa + δa + λ̂a

) .

From this latter expression, we derive the quadratic equation

Λa

(
λ̂a

)2

+
[
Λa (µa + δa)−Db(µa + δa)− βaaΦaΛa

]
λ̂a − µa (µa + δa)Db = 0.

(33)
Denote the discriminant of Eq. (33) by

∆a =
[
Λa (µa + δa)−Db(µa + δa)− βaaΦaΛa

]2
+ 4µaΛa (µa + δa)Db > 0. (34)

Then, the unique positive root of Eq. (33) is

λ̂a =
(βaaΦa − µa − δa) Λa +Db(µa + δa) +

√
∆a

2Λa
. (35)

Thus, the components of the unique equilibrium point Êa, obtained by substituting
(35) into (32) are

Ŝa =
2Λ2

a

2µaΛa + (βaaΦa − µa − δa) Λa +Db(µa + δa) +
√

∆a

,

Îa =
Λa
[
(βaaΦa − µa − δa) Λa +Db(µa + δa) +

√
∆a

]
(µa + δa)

[
2µaΛa + (βaaΦa − µa − δa) Λa +Db(µa + δa) +

√
∆a

] .
(36)

Proposition 3. The endemic equilibrium Êa for subsystem (28) is GAS whenever
R0,a ≤ 1.
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Proof. We first establish the LAS of Êa when R0,a ≤ 1. Let J(Êa) be the Jacobian

matrix at any equilibrium point Êa of (28). We have

J(Êa) =


−
βaaΦa

(
Îa

)2

(
N̂a

)2 − DbÎa(
N̂a

)2 − µa −
βaaΦa

(
Ŝa

)2

(
N̂a

)2 +
DbŜa(
N̂a

)2

βaaΦa

(
Îa

)2

(
N̂a

)2 +
DbÎa(
N̂a

)2

βaaΦa

(
Ŝa

)2

(
N̂a

)2 − DbŜa(
N̂a

)2 − (µa + δa)


.

Since Êa is an equilibrium point, it can be shown that the trace of J(Êa) is

trace(J(Êa)) =
βaaΦa

(
Ŝa − Îa

)
− (δa + 2µa) N̂a −Db

N̂a
,

=
− [(µa + δa) (1−R0,a) + µa] Ŝa − [βaaΦa + 2µa + δa] Îa −Db

N̂a
,

< 0.
(37)

Furthermore, the determinant det(J(Êa)) of J(Êa) is

det(J(Êa)) =
βaaΦa (µa + δa)

(
Îa

)2

+Db (µa + δa) Îa − µaβaaΦa

(
Ŝa

)2

(
N̂a

)2

+
µaDbŜa + µa (µa + δa)

(
N̂a

)2

(
N̂a

)2 ,

=

(µa + δa)

[
βaaΦa

(
Îa

)2

+ µa

(
Îa

)2

+DbÎa + 2µaŜaÎa

]
(
N̂a

)2

+
(µa + δa)µaŜa (1−R0,a) +Dbµaδa(

N̂a

)2 ,

(38)

which is positive whenever R0,a ≤ 1. This proves the LAS of Êa.

Secondly, we prove the global attractiveness of Êa. To achieve this, we use the
Dulac criterion [27] to rule out the existence of periodic solutions. Consider the
Dulac function

g(Sa, Ia) =
1

Ia
,

defined on the connected region

(
0,

Λa
µa

)
×
(

0,
Λa
µa

)
containing the interior of Ωa.

Let X(Sa, Ia) = (X1(Sa, Ia), X2(Sa, Ia))
T

be the right hand side of (28). It is easily
shown that

∂(gX1)

∂Sa
+
∂(gX2)

∂Ia
= −βaaΦa

Na
− Db

I2
a

− µa
Ia

< 0.

Hence, by Dulac’s criterion, there is no periodic solution in the interior of Ωa. Hence

Êa is GAS whenever R0,a ≤ 1. This completes the proof. �



42 T. BERGE, S. BOWONG, J. LUBUMA AND M. L. M. MANYOMBE

4.3. Dynamics of human sub-model (19a)-(19d) when bat and animal sub-
populations are evaluated at steady states. We conclude the series of sub-
models by studying the dynamics of the human subpopulation when the other
subpopulations (bats and animals) are at their different equilibrium states. The
subsystem under investigation is constituted of Eqs. (19a)-(19d) given below.

dSh
dt

= Λh −
βhhΦhShIh

Nh
− βhaΦaShIa

Nh
− βhbShIb

Nh
− µhSh,

dEh
dt

=
βhhΦhShIh

Nh
+
βhaΦaShIa

Nh
+
βhbShIb
Nh

− (µh + ω)Eh,

dIh
dt

= ωEh − (µh + γ) Ih,

dRh
dt

= γ(1− f) Ih − µhRh.

(39)

4.3.1. Dynamics of subsystem (39) when bats and animals are evaluated
at the equilibrium point

(
P 0
a , P

0
b

)
. Consider the subsystem (19a)-(19d) deal-

ing with human subpopulation, where the animals and bats subpopulations are at
disease-free equilibrium (P 0

a , P
0
b ):

dSh
dt

= Λh −
βhhΦhShIh

Nh
− µhSh,

dEh
dt

=
βhhΦhShIh

Nh
− (µh + ω)Eh,

dIh
dt

= ωEh − (µh + γ) Ih,

dRh
dt

= γ(1− f) Ih − µhRh.

(40)

Model (40) is well posed mathematically and biologically in the compact set

Ωh =

{
(Sh, Eh, Ih, Rh) ∈ R4

+ : Nh = Sh + Eh + Ih +Rh ≤
Λh
µh

}
. (41)

System (40) has two equilibrium points, namely the disease-free

P 0
h =

(
Λh
µh
, 0, 0, 0

)
,

which always exists and the endemic equilibrium point Eh =
(
Sh, Eh, IhRh

)
, which

exists whenever the human intra-specific basic reproduction number

R0
0h =

βhhΦhω

(µh + ω) (µh + γ)
> 1.

Set

Bh = (µh + ω) (µh + γ) .

Then the components of Eh are:

Sh =
Λh [µh (µh + ω + γ) + γω(1− f)]

µh [Bh (R0
0h − 1) + µh (µh + ω + γ) + γω(1− f)]

,

Eh =
Λh (µh + γ)

(
R0

0h − 1
)

Bh (R0
0h − 1) + µh (µh + ω + γ) + γω(1− f)

,

Ih =
ωΛh (µh + γ)

(
R0

0h − 1
)

(µh + γ) [Bh (R0
0h − 1) + µh (µh + ω + γ) + γω(1− f)]

,

Rh =
γ(1− f)ωΛh (µh + γ)

(
R0

0h − 1
)

µh (µh + γ) [Bh (R0
0h − 1) + µh (µh + ω + γ) + γω(1− f)]

.
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The asymptotic behavior of model (40) is completely described by

Theorem 4.2. The following statements hold true:

(1) The disease-free equilibrium point P 0
h is GAS when R0,h ≤ 1 and unstable if

R0h > 1.
(2) The endemic equilibrium point Eh is GAS whenever R0h > 1.

Proof. The first item is established using the Lyapunov function

Lh = Lh (Sh, Eh, Ih, Rh) =
ω

Bh
Eh +

1

µh + γ
Ih.

The Lie derivative of Lh with respect to the vector field given by the right hand
side of (40) is

L̇h =

[
βhhΦhωSh
BhNh

− 1

]
Ih = − [(1−R0,h)Sh + Eh + Ih +Rh]

Ih
Nh

.

Clearly L̇h ≤ 0 in Ωh, and L̇h = 0 if and only if Ih = 0 or R0,h = 1 and Eh +
Ih + Rh = 0. In both cases, the largest invariant set in Mh = {(Sh, Eh, Ih, Rh) ∈
Ωh/ L̇h = 0

}
is the disease-free equilibrium point P 0

h . Indeed, suppose Ih = 0,

then replace it in the first, second and fourth equations of (40) and solve. One
has Sh(t) = Λh/µh + [Sh(0)− Λh/µh] e−µht, Eh(t) = Eh(0)e−(µh+γ)t and Rh(t) =
Rh(0)e−µht. Thus, as t → ∞, Sh(t) → Λh/µh, and (Eh(t), Eh(t)) → (0, 0). Hence
Mh =

{
P 0
h

}
. The conclusion for the GAS of P 0

h follows by LaSalle’s Invariance
Principle.

As for the second item of Theorem 4.2, the proof of the global asymptotic stability
is quiet long and challenging. We refer the interested reader to [39, 61] where the
proof is provided using a geometrical approach [40]. �

Thanks to Theorem 4.1 and combining Proposition 1, Proposition 2 and Propo-
sition 4.2 we are now able state the first main result regarding the asymptotic
behavior of the environmental-free model (19).

Theorem 4.3. For system (19), the following statements hold true:

1. If R0,h ≤ 1, R0,a ≤ 1, and R0,b ≤ 1, then
(
P 0
h , P

0
a , P

0
b

)
is GAS .

2. If R0,h > 1, R0,a ≤ 1, and R0,b ≤ 1, then
(
Ph, P

0
a , P

0
b

)
is GAS.

4.3.2. Dynamics of (39) with the bats and animals at steady state
(
P a, P

0
b

)
. The

model under consideration in this section is

dSh
dt

= Λh −
βhhΦhShIh

Nh
− DaSh

Nh
− µhSh,

dEh
dt

=
βhhΦhShIh

Nh
+
DaSh
Nh

− (µh + ω)Eh,

dIh
dt

= ωEh − (µh + γ) Ih,

dRh
dt

= γ(1− f) Ih − µhRh,

(42)

where the constant Da is giving by

Da = βhaΦaIa. (43)

This model is obviously a dynamical system on the biological feasible domain given
in (41).
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Due to the fact Ia > 0, model (42) cannot exhibit a disease free equilibrium. We
shall therefore focus on the existence and stability of possible endemic equilibrium
points. Let E∗∗h = (S∗∗h , E

∗∗
h , I

∗∗
h , R∗∗h ) be an equilibrium of (42). Set

λ∗∗h =
βhhΦhI

∗∗
h +Da

N∗∗h
. (44)

Then (S∗∗h , E
∗∗
h , I

∗∗
h , R∗∗h ) is a positive solution of


Λh − (λ∗∗h + µh)S∗∗h = 0,
λ∗∗h S

∗∗
h − (µh + ω)E∗∗h = 0,

ωE∗∗h − (µh + γ) I∗∗h = 0,
γ(1− f) I∗∗h − µhR∗∗h = 0.

(45)

From (45), we have



S∗∗h =
Λh

µh + λ∗∗h
,

E∗∗h =
Λhλ

∗∗
h

(µh + ω) (µh + λ∗∗h )
,

I∗∗h =
ωΛhλ

∗∗
h

Bh (µh + λ∗∗h )
,

R∗∗h =
γ(1− f)ωΛhλ

∗∗
h

µhBh (µh + λ∗∗h )
,

N∗∗h =
[µhBh (µh + λ∗∗h ) + µh (µh + γ)λ∗∗h + µhωλ

∗∗
h + γ(1− f)ωλ∗∗h ]

µhBh (µh + λ∗∗h )
.

(46)
Putting the above expressions (46) in (44), yields the following quadratic equation
with respect to λ∗∗h

ah (λ∗∗h )
2

+ bhλ
∗∗
h + ch = 0, (47)

where the constant coefficients ah, bh, ch are:


ah = Λh [µhBh + µh (µh + γ) + µhω + γ(1− f)ω] ,
bh = µ2

hBhΛh − µhβhhΦhωΛa + µhω − µh (µh + γ) (µh + ω)Da,
ch = −µ2

hBhDa.
(48)

Since, ah > 0 and ch < 0, the quadratic equation (47) has one positive solution λ∗∗h
to which corresponds the unique endemic equilibrium point E∗∗h of subsystem (42)
giving by (46).

Similar arguments to those in [39,61] can be used to prove the global asymptotic
stability of the unique endemic equilibrium point E∗∗h of subsystem (42). Hence,
thanks to Theorem 4.1, we can give the second main theorem of this section.

Theorem 4.4. If R0,a > 1 and R0,b ≤ 1, then the equilibrium point
(
E∗∗h , P a, P

0
b

)
for subsystem (42) is GAS.
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4.3.3. Dynamics of (39) with the bats and animals at steady state
(
Êa, P b

)
. Re-

placing
(
Îa, Ib

)
in subsystem (39) above, yields the following system

dSh
dt

= Λh −
βhhΦhShIh

Nh
−

(
D̂a +Db

)
Sh

Nh
− µhSh,

dEh
dt

=
βhhΦhShIh

Nh
+

(
D̂a +Db

)
Sh

Nh
− (µh + ω)Eh,

dIh
dt

= ωEh − (µh + γ) Ih,

dRh
dt

= γ(1− f) Ih − µhRh,

(49)

where D̂a is the constant defined by

D̂a = βhaΦaÎa. (50)

The theoretical analysis of subsystem (49) is similar to that of subsystem (42).
Denoting by E∗∗∗h = (S∗∗∗h , E∗∗∗h , I∗∗∗h , R∗∗∗h ) its unique endemic equilibrium defined
in terms of the analogues for (42) of Eqs. (44) and (47), we obtain the following
result.

Theorem 4.5. If R0,a ≤ 1 and R0,b > 1, then the equilibrium
(
E∗∗∗h , Êa, P b

)
for subsystem (49) is GAS.

We summarize the existence of the four equilibria of system (19) and their sta-
bility properties in the following table.

Equilibria Conditions of existence Stability(
P 0
h , P

0
a , P

0
b

)
R0,h > 1,R0,a ≤ 1,R0,b ≤ 1 GAS(

Eh, P
0
a , P

0
b

)
R0,h ≤ 1,R0,a ≤ 1,R0,b ≤ 1 GAS(

E∗∗
h , P a, P

0
b

)
R0,a > 1,R0,b ≤ 1 GAS(

E∗∗∗
h , Êa, P b

)
R0,a ≤ 1,R0,b > 1 GAS

Table 3. Existence, conditions for existence and stability of equilibria.

5. Sensitivity analysis. We carried out a sensitivity analysis. This allows to
identify the parameters that are most influential in determining population dynam-
ics [42,43]. A Latin Hypercube Sampling (LHS) scheme [15,43] samples 1000 values
for each input parameter using a uniform distribution over the range of biologically
realistic values, listed in Table 7. Using system (1), 1000 model simulations are
performed by randomly pairing sampled values for all LHS parameters. Outcome
measures are calculated for each run: Exposed individuals to EVD, infected in-
dividuals, virus concentration, infected animals and infected bats. Partial Rank
Correlation Coefficients (PRCC) and corresponding p-values are computed. An
output is assumed sensitive to an input if the corresponding PRCC is less than
−0.50 or greater than +0.50, and the corresponding p-values is less than 5%. The



46 T. BERGE, S. BOWONG, J. LUBUMA AND M. L. M. MANYOMBE

results are displayed in Table 4, Table 5 and Table 6. From these tables, it can
be seen that the effective contact rate between humans and fruit bats and the bat
mortality rate are the most influential parameters on the latent and infected human
individuals.

Parameters Eh Ih V Ia Ib

Λh 0.7624∗∗ 0.2343 0.1922 0.0124 0.0172
Λa −0.1822 0.2005 0.1610 0.8914∗∗ 0.0180
Λb −0.3116 0.4407∗ 0.3008 −0.5346∗∗ 0.0132
µh −0.8657∗∗ −0.8588∗∗ −0.9438∗∗ −0.0341 0.0329
µa 0.1060 −0.1786 −0.1134 −0.4854∗ −0.0148
µb 0.5677∗∗ −0.6054∗∗ −0.4335∗ 0.7106∗∗ 0.8966∗∗

µv −0.0143 −0.0493 −0.0453 −0.0530 0.0202
ξh 0.0030 −0.0099 0.284 −0.0491 −0.0250
ξa −0.0107 0.0630 0.0010 −0.1381 0.0356
νh −0.0218 0.0572 0.0200 −0.0509 −0.0518
νa −0.1213 0.1149 0.0410 −0.1530 0.0256
ω −0.1299 −0.2465 0.5385∗∗ 0.0513 −0.0613
γ 0.0463 −0.0623 0.1735 0.0108 0.0092
δa 0.0239 −0.0450 −0.0185 −0.325 −0.0044
αh 0.0143 0.0490 −0.0125 0.0067 0.0154
αa 0.043 0.0177 0.1003 −0.0653 −0.0434
αb 0.0078 −0.0041 −0.0254 −0.0113 −0.0506
θh 0.0133 0.0073 0.0845 −0.0410 −0.0025
f 0.0142 −0.0065 −0.4980∗ −0.0320 −0.0106
K 0.0375 −0.0581 0.0141 0.0003 0.0263
βhh −0.2682 0.3205 0.1217 0.0220 0.0038
βhb −0.3700 0.5287∗∗ 0.3747 −0.0114 0.0125
βhv 0.0785 0.0106 0.0022 −0.0824 −0.0129
βha −0.1816 0.2399 0.1559 −0.0395 −0.0448
βbb 0.0196 0.0757 0.1389 −0.0976 −0.8883∗∗

βab −0.0242 0.0984 0.0080 −0.6039∗∗ −0.0030
βbv −0.0214 −0.0310 −0.0280 −0.0071 0.0391
βaa −0.0145 0.1266 −0.0036 −0.4099∗ −0.0596
βav −0.0214 0.0150 0.0718 0.0737 0.0339

Table 4. PRCCs of full model’s parameters

6. Numerical simulations. In this section, we give numerical simulations that
support the theory presented in the previous sections. The simulations are pro-
duced by MatLab. While the parameters values for human-to-human transmission
are mostly taken from [50,57], we have proposed almost all the parameter values re-
garding animal-to-human, bat-to-human, environment-to-human, environment-to-
animal, environment-to-bat, animal-to-animal, animal-to-bat and bat-to-bat trans-
mission mechanisms.

6.1. General dynamics. We numerically illustrate the asymptotic behavior of the
full model and the sub-model without the environmental contamination. The GAS
of the disease-free equilibrium P0 demonstrated in Theorem 3.4 and the existence
and stability of a unique endemic equilibrium as stated in Conjecture 1 for the model
with the environmental contamination are numerically shown on Figure 2 and Fig-
ure 3, respectively. However, Figure 4 further suggests the GAS of (Ph, P

0
a , P

0
b ).
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Parameters Eh Ih Ia Ib

Λh 0.7897∗∗ 0.3341 0.0602 0.0406
Λa −0.1412 0.2206 0.8767 −0.0122
Λb −0.3108 0.4231∗ −0.4185∗ −0.0214
µh −0.8755∗∗ −0.8466∗∗∗ 0.0180 0.0341
µa 0.0936 −0.2108 −0.4814∗ −0.0046
µb 0.5727∗∗ −0.6096∗∗ 0.7117∗∗∗ 0.9040∗∗∗

ξh 0.0055 0.0391 −0.0337 −0.0270
ξa −0.0913 0.1327 −0.0923 −0.0041
νh −0.0183 0.0184 0.0608 −0.0183
νa −0.0483 0.0745 −0.0953 −0.0253
ω −0.1496 −0.2233 0.0116 0.0046
γ 0.0124 −0.0410 0.0286 −0.0295
δa 0.0690 −0.0647 −0.3869 0.0175
θh −0.0221 0.0308 0.0099 0.0539
f 0.0035 −0.0057 0.0042 0.0170
βhh −0.2865 0.3144 −0.0275 −0.0105
βhb −0.3649 0.4837∗ −0.0063 −0.0131
βha −0.2057 0.3168 0.0372 0.0050
βbb −0.0686 0.0757 −0.2270 −0.8988∗∗∗

βab −0.0719 0.0684 −0.5291∗∗ −0.0245
βaa 0.0063 0.0049 −0.2936 0.0053

Table 5. PRCCs of model’s parameters without environment

Parameters Eh Ih V Ib

Λh 0.7853∗∗ 0.2046 0.1034 0.0202
Λb −0.3295 0.4674∗ 0.3423 −0.0096
µh −0.8726∗∗ −0.8067∗∗ −0.9046∗∗ 0.0203
µb 0.6098∗∗ −0.6607∗∗ −0.5215∗∗ 0.8990∗∗

µv 0.01 0.0066 0.0254 −0.0085
ξh −0.0047 0.0470 0.0421 −0.0097
νh −0.0110 0.0116 −0.0052 0.0244
ω −0.1750 −0.1661 0.4079∗ −0.0014
γ 0.0404 0.0196 0.1127 −0.0412
αh −0.0375 −0.0105 0.0071 0.0263
αb 0.0091 −0.0128 −0.0147 0.0408
θh −0.0182 0.0316 0.0038 −0.0090
f 0.0037 0.0187 −0.4368∗ −0.0041
K −0.0096 −0.0177 0.0319 −0.0294
βhh −0.2646 0.3093 0.2130 0.0209
βhb −0.3794 0.5955∗∗ 0.4528∗ 0.0162
βhv 0.0055 0.0171 −0.0102 −0.0538
βbb −0.0803 0.0556 0.0875 −0.8952∗∗∗

βbv −0.0094 0.0178 −0.0178 0.0804

Table 6. PRCCs of model’s parameters without animals

Figure 5 illustrates the GAS of (P 0
h , P

0
a , P

0
b ) for the free-environmental contamina-

tion sub-model (19) as established in Theorem 4.3. Figure 6 supports the stability
of (E∗∗h , P a, P

0
b ) as shown in Theorem 4.4, while Figure 7 illustrates the stability of

(E∗∗∗h , Êa, P b) as shown in Theorem 4.5.
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Parameters Range Values Units Source

Λh Variable 100 indiv.day−1 N/A
Λa Variable 5 indiv.day−1 N/A
Λb Variable 10 indiv.day−1 N/A
µh 0-1 0.33/365 day−1 [57]
µa 0-1 0.4/365 day−1 Assumed
µb 0-1 0.5/365 day−1 Assumed
µv 0-1 0.85/30 day−1 Assumed [10,46]
ξh = 1/τh 0-1 1/2.5 day−1 [50, 57]
τh 1-7 2.5 day [50, 57]
ξa = 1/τa 0-1 1/7 day−1 Assumed
τa 1-14 7 day Assumed
νh 1-5 1.2 day−2 Assumed
νa 1-5 1.3 day−2 Assumed
ω 1/2-1/21 1/21 day−1 [22, 50]
γ 1/7-1/14 1/14 day−1 [57]
δa 0-1 0.5/365 day−1 Assumed
αh 10-100 50 cells.(ml.day.indiv)−1 [8]
αa 20-200 100 cells.(ml.day.indiv)−1 Assumed
αb 50-400 200 cells.(ml.day.indiv)−1 Assumed
θh = 1/rh 1/81-1 1/61 day−1 [50]
rh 1-81 61 day [50]
f 0.4-0.9 0.70 dimensionless [50, 52,57]
K 106-109 106 cells.ml−1 [8]
βhh 0-1 day−1 Variable
βhb 0-1 day−1 Variable
βhv 0-1 day−1 Variable
βha 0-1 day−1 Variable
βbb 0-1 day−1 Variable
βab 0-1 day−1 Variable
βbv 0-1 day−1 Variable
βaa 0-1 day−1 Variable
βav 0-1 day−1 Variable

Table 7. Baseline numerical values for the parameters of system (1)

6.2. Impact of the contaminated environment on the infected level of
EVD. We numerically assess the impact of the contaminated environment on the
severity/endemicity of EVD, as well as the effects of bats and animals on the long
run and severity/endemicity of EVD.

Figure 8 and Figure 9 show the increasing behavior of the full model-related
infected component with respect to the indirect effective contact rates βhv, βav
and βbv. This highlights the detrimental role of the contaminated environment on
the transmission dynamics of EVD. Moreover, one observes from Figure 8 that,
the infected bats are not influenced by the environmental contamination, which
suggests that the indirect route of transmission for bats can be neglected. Similarly
Figure 9 shows that the infected humans and bats are not significantly influenced
by the incorporation of animals species in the model development. This suggests
and confirms in some sense (see [37]) the fact that the bats are reservoir of Ebola
viruses. Therefore, it may be more suitable to build a model involving only two
hosts: namely, humans and fruit bats.
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Figure 2. GAS of the full model disease-free equilibrium when
Λh = 500, µh = 0.033, µa = 0.04, µb = 0.05, µv = 0.85, τh = 4,
δa = 0.05, αh = αa = αb = 0.95, f = 0.50, βhh = 0.006, βhv =
βbv = βav = βab = 0.0005, βhb = βha = 10−8, βbb = βaa = 0.0002
(so that R0 = 0.8 < 1).

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Time (days)

S
h

0 50 100 150 200 250 300
0

200

400

600

800

Time (days)

E
h

0 50 100 150 200 250 300
0

100

200

300

Time (days)

I h

0 50 100 150 200 250 300
0

100

200

300

Time (days)

R
h

0 50 100 150 200 250 300
0

100

200

300

400

500

Time (days)

V

0 50 100 150 200 250 300
0

50

100

150

Time (days)

S
a

0 50 100 150 200 250 300
0

10

20

30

Time (days)

I a

0 50 100 150 200 250 300
0

50

100

150

200

Time (days)

S
b

0 50 100 150 200 250 300
0

50

100

150

Time (days)

I b

Figure 3. Stability of the full model endemic equilibrium when
Λh = 100, µh = 0.033, µa = 0.04, µb = 0.05, µv = 0.85, τh = 4,
δa = 0.05, αh = αa = αb = 0.95, f = 0.50, βhh = 0.3, βhv = 0.5,
βbv = 0.5, βbb = 0.0005, βhb = βha = 10−8, βab = 0.005, βaa =
0.02, βav = 0.5 (so that R0 = 2.0024 > 1).

To illustrate the effects of bats and animals on the dynamics of EVD, Figure
9 is the simulation of the model (1) with and without bats on the one hand and
with and without animals on the other hand. It can be seen that the incorporation
of bats increases significantly the endemic level of EVD in the human population,
while the involvement of animals does not.

7. Conclusion. The main purpose of this paper was to build and analyze a math-
ematical model for the transmission dynamics of EVD in a complex Ebola virus life
ecology. We have then developed and analyzed both theoretically and numerically
a new model by taking into account the known, the probable/suspected and the
hypothetical mechanisms of transmission of EVD [26, 37, 51]. The proposed model
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Figure 4. Stability of (Ph, P
0
a , P

0
b ) when Λh = 10, Λa = 3, Λb =

1.5, µh = 0.033, µa = 0.2, µb = 0.29, δa = 0.05, αh = αa =
αb = 0.95, f = 0.50, βhh = 0.3, βbb = 0.05, βhb = βha = 10−8,
βab = 0.05, βaa = 0.2 (so that R0,h = 1.7269, R0,a = 0.8074,
R0,b = 0.8918).
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Figure 5. Stability of (P 0
h , P

0
a , P

0
b ) when Λh = 10, Λa = 3, Λb =

1.5, µh = 0.033, µa = 0.2, µb = 0.29, δa = 0.05, αh = αa =
αb = 0.95, f = 0.50, βhh = 0.03, βbb = 0.05, βhb = βha = 10−8,
βab = 0.05, βaa = 0.2 (so that R0,h = 0.1727, R0,a = 0.8074,
R0,b = 0.8918).

captures as much as possible the essential patterns of the disease evolution as a
three cycle transmission process in the following two ways:

1. It involves the interplay between the epizootic phase (during which the disease
circulates periodically amongst non-human primates populations and deci-
mates them), the enzootic phase (during which the disease always remains in
fruit bats population) and the epidemic phase (during which the EVD threat-
ens and decimates the human beings).

2. It includes the direct transmission mechanism between and within the three
different types of populations which are humans, animals and fruit bats, as
well as the indirect route of infection through a contaminated environment.
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Figure 6. Stability of (E∗∗h , P a, P
0
b ) when Λh = 10, Λa = 10,

Λb = 1.5, µh = 0.033, µa = 0.04, µb = 0.29, δa = 0.05, αh = αa =
αb = 0.95, f = 0.50, βhh = 0.3, βbb = 0.05, βhb = βha = 10−8,
βab = 0.05, βaa = 0.2 (so that R0,h = 1.7269, R0,a = 2.2429,
R0,b = 0.8918).
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Figure 7. Stability of (E∗∗∗h , Êa, P b) when Λh = 10, Λa = 10,
Λb = 10, µh = 0.033, µa = 0.2, µb = 0.29, δa = 0.05, αh = αa =
αb = 0.95, f = 0.50, βhh = 0.3, βbb = 0.05, βhb = βha = 10−8,
βab = 0.05, βaa = 0.2 (so that R0,h = 1.7269, R0,a = 0.8074,
R0,b = 3.1250).

More precisely, we have extended and enriched the few existing SEIR-type human
models for EVD with five additional compartments which model the direct transmis-
sions within/between animal and fruit bat populations as well as the environmental
indirect contamination. In this double setting of direct and indirect transmissions,
our major findings from the theoretical, numerical and computational point of view
read as follows:

From the theoretical perspective, our results are two-fold:
• For the full model with the environmental contamination, we have computed the
basic reproduction number R0 and used it to prove the global asymptotic stability
of the disease free equilibrium, whenever R0 < 1. Furthermore, when R0 > 1 the
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existence and the stability of an endemic equilibrium is investigated and conjec-
tured.
• The sub-model without the environmental contamination exhibits one globally
asymptotically stable disease-free equilibrium whenever the host-specific basic re-
production numbers, R0,h, R0,a and R0,b are less than or equal to the unity. We
have also shown that a such sub-model has three additional endemic equilibria which
are all globally asymptotical stable.

From the numerical and computational point of view, the following three facts
were addressed:
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Figure 8. Infected population with and without environment
when Λh = 400, Λa = 100, Λb = 80, µh = 0.033, µa = 0.04,
µb = 0.09, µv = 0.85, τh = 4, δa = 0.5, αh = αa = αb = 0.95,
f = 0.50, βaa = 0.5, βbb = βab = 0.0005, βhb = βha = 10−8.
(A) βhh = 0.3, βhv = βbv = βav = 0.25. (B) βhh = 0.2,
βhv = βbv = βav = 0.4.
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Figure 9. (A) Infected population with and without bats when
Λa = 100, µa = 0.04, δa = 0.5, νa = 0.04 , αa = 0.95, βaa =
0.5, βha = 10−8, βav = 0.4. (B) Infected population with and
without animals when Λb = 80, µb = 0.09, νb = 0.09, αb = 0.95,
βhb = 10−8, βbb = 0.0005, βbv = 0.4. With Λh = 400, µh = 0.033,
µv = 0.85, τh = 4, αh = 0.95, f = 0.50, βhh = 0.3, βhv = 0.4.
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• In order to assess the role of a contaminated environment on the spreading of
EVD, the infected human component resulting from sub-model without the envi-
ronmental contamination was compared with that of the full model. Similarly, we
have considered the sub model without animals on the one hand, and the sub model
without bats on the other hand, and found that bats influence more the dynamics
of EVD than animals. This is probably because almost all EVD outbreaks were
due to consumption and manipulation of fruits bats.
• Global sensitivity analyses were performed to identify the most influential

model parameters on the model variables. It shows that the effective contact rate
between humans and fruit bats and the bat mortality rate were the most influential
parameters on the latent and infected human individuals. This is probably because
almost all EVD outbreaks were due to consumption and manipulation of fruits bats.
• Numerical simulations, apart from supporting the theoretical results and the

existence of a unique global stable endemic equilibrium for the full model (when
R0 > 1), have further suggested the following two important statements: (1)- fruit
bats are more important in the transmission processes and the endemicity of EVD
than the animal species. This is in line with biological findings through which fruit
bats were identified as the reservoir of Ebola viruses. (2)- the indirect environmental
contamination is detrimental to human beings and is almost insignificant for the
transmission in bats. From all these investigations, we believe that a more realistic
mathematical model will involve only human beings and fruit bats.

Despite the high level of generalization and complexity of our work, it still offers
many opportunities for extensions. Theses include:

(i) The incorporation of the Ebola-deceased compartments to better capture the
transmission mechanisms of EVD during funerals [9].

(ii) The incorporation of the transmission in health care centers in which medical
staff can be infected as well [58].

(iii) The incorporation of patches to account for the internationalization of EVD
as it is the case in Western Africa [13,23,31].

(iv) The modeling of multi-species transmission mechanism in the case where the
same region is threaten by more than one Ebola virus strain.

(v) The incorporation of the human behavior. For instance, there were evidence
of behavioral reaction and self-protection measures: people were scared, they
panicked and left care centers, etc...Thus the need to fill the gap of lack of
modeling human behavior [11,21]. This important feature calls for a modeling
approach based on “Behavioral Epidemiology” developed in [41], which we are
already addressing in another work which takes into account self-protection
measures driven by human behavior.

(vi) The modeling of some optimal control strategies such as vaccination, isolation,
quarantine, treatment, early detection, environmental decontamination.
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