http://www.aimspress.com/journal/Math

Research article

New classes of reverse super edge magic graphs

Kotte Amaranadha Reddy and S Sharief Basha*
Department of Mathematics, Vellore Institute of Technology, Vellore, India
* Correspondence: Email: shariefbasha.s@gmail.com.

Abstract

A reverse edge magic (REM) labeling of a graph $G(V, E)$ with p vertices and q edges is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ such that $k=f(u v)-\{f(u)+f(v)\}$ is a constant k for any edge $u v \in E(G)$. A REM labeling f is called reverse super edge magic (RSEM) labeling if $f(V(G))=$ $\{1,2,3,4,5, \ldots, v\}$ and $f(E(G))=\{v+1, v+2, v+3, v+4, v+5, \ldots, v+e\}$. In this paper, we find some new classes of RSEM labeling and the investigation of the connection between the RSEM labeling and different classes of labeling.

Keywords: trees; lobster; Banana graph; cartesian product; cycle
Mathematics Subject Classification: 37E25, 05C38

1. Introduction

The edge magic labelings of graphs were introduced by Kotzig and A. Rosa [1] and they called also magic valuations of graphs. In [2], The super edge magic labelings of a graph then the idea of edge magic labelings is proved by H. Enomoto et al. In [8], R. M. Figueroa Centeno et al. proved all caterpillars are super edge magic also verified that $m K_{1, n}, m$ and m, n are positive integers with the super edge magic is odd. In [4], M. Figueroa Centeno et al. defined that the forest $P_{m} \cup K_{1, n}, m \geq 4$ each positive integer $n \geq 1$. All trees are edge magic is verified by G. Ringel and A. Llado [8]. H. Enomoto et al. proposed in [2] a more difficult hypothesis: that every tree is super edge magic. All the lobsters are gracefully demonstrated by J. C. Bermond [7].

If G be the (super) 2 -regular edge magic graph with n positive integers, then $G \odot \overline{K_{n}}$ is (super) edge magic and therefore for every two integers $m \geq 3$ and $m \geq 1$, then $n-$ crown $C_{m} \odot \bar{K}_{n}$ is super edge magic these results proved by R. Figueroa Centeno et al. [6]. V. Yegnanarayanan [3] demonstrated that the graph is obtained through edge magic for $t \geq 2$ also introduced new pendant edges of the outermost C_{3} in $P_{t} \times C_{3}$ at each vertex. In [10], The total graph $T\left(P_{n}\right)$ is harmonious is obtained by R . Balakrishnan and R. Sampath kumar. In [2], H. Enomoto et al. is obtained that the complete bipartite graph $K_{m, n}$ is super edge-magic iff $m=1$ or $n=1$. R. Balakrishnan et al. [11] obtained that the
harmonious iff n is even and the graph $K_{2}+2 K_{2}$ is magic iff $n=3$. In [9], K. Kathiresan proved that the subdivision graph $S\left(L_{n}\right)$ obtained by subdividing every edge of G exactly one is graceful. In [5], V. Yegnanarayanan introduced several other variations of magic labelings and discuss what are called vertex-magic and vertex-antimagic of $(1,1),(1,0)$ and $(0,1)$ graphs. Also, discussed edge-magic and edge-antimagic of $(1,0)$ and $(0,1)$ graphs. Finally, exhibited such magic, anti-magic labelings for a number of classes of graphs and derived several general results governing these graphs.

A reverse edge magic (REM) labeling of a graph $G(V, E)$ with p vertices and q edges is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ such that $k=f(u v)-\{f(u)+f(v)\}$ is a constant k for any edge $u v \in E(G)$. A REM labeling f is called reverse super edge magic (RSEM) labeling if $f(V(G))=$ $\{1,2,3,4,5, \ldots, v\}$ and $f(E(G))=\{v+1, v+2, v+3, v+4, v+5, \ldots, v+e\}$. In this paper, we find some new classes of RSEM labeling and the investigation of the connection between the RSEM labeling and different classes of labeling.
Definition 1. Let a be the path $P_{n}, 1 \leq i \leq n$ and T_{1} be a caterpillar obtained by position one end vertex at each vertex. Let T be the lobster created by linking a copy of P_{2} at each end vertex b_{i} of $1 \leq i \leq n$.

2. New structures of revese super edge magic graphs

The accompanying outcomes on trees give support to the conjecture that all trees are RSEM.
Lemma 1. A graph G with p vertices and q edges is RSEM iff \exists a bijective function $f: V(G) \rightarrow$ $\{1,2, \ldots, p\}$ so that the set $S=\{f(x)+f(y): x y \in E(G)\}$ contains q number of successive numbers. In such a case, f spreads to a RSEM labeling of the graph G with reverse magic constant $k=p+q-s$, where $s=\max (S)$ and $S=\{(p+1)-k,(p+2)-k,(p+3)-k, \ldots,(p+q)-k\}$.

Theorem 1. If m is odd. Then 3 -stat $S_{m, 3}$ is RSEM.
Proof. Let m is odd. Assume m be the degrees of vertex x in $S_{m, 3}$ and 3 is the length of $i^{\text {th }}$ path of $x u_{i} v_{i} w_{i}$ for $1 \leq i \leq m$.

The paths are RSEM and since $S_{1,3} \cong P_{4}$, when $m=1$ the outcome is true. Assume that m is an odd number and $m>3$. Assume $n=3 m+1$.

Define the vertex labeling, $f: V\left(S_{m, 3}\right) \rightarrow\{1,2,3,4,5, \ldots, n\}$ such that

$$
\begin{gathered}
f(x)=\frac{n+2}{3} \\
f\left(u_{1}\right)=n \\
f\left(u_{2 i}\right)=2 i \text { for } 1 \leq i \leq \frac{n-4}{6} \\
f\left(u_{2 i+1}\right)=\frac{n+5}{3}+2 i-1 \text { for } 1 \leq i \leq \frac{n-4}{6} \\
f\left(v_{2 i}\right)=\frac{n+5}{3}+2 i-1 \text { for } 1 \leq i \leq \frac{n-4}{6} \\
f\left(v_{2 i+1}\right)=2 i+1 \text { for } 0 \leq i \leq \frac{n-4}{6}
\end{gathered}
$$

$$
\begin{gathered}
f\left(w_{1}\right)=\frac{2 n+1}{3} \\
f\left(w_{2 i}\right)=\frac{5 n-2}{6}-i+1 \text { for } 1 \leq i \leq \frac{n-4}{6} \\
f\left(w_{2 i+1}\right)=n-i \text { for } 1 \leq i \leq \frac{n-4}{6} .
\end{gathered}
$$

Note that

$$
\begin{aligned}
S & =\left\{f(x)+f(y): x y \in E\left(S_{m, 3}\right), m \leq 3 \text { is odd }\right\} \\
& =\left\{\frac{4 n+2}{3}, \frac{4 n-1}{3}, \ldots, \frac{n+8}{3}, \frac{n+11}{3}\right\},
\end{aligned}
$$

is one set of $n-1$ successive integers. Accordingly, by using the Lemma 1 , f extend to a RSEM labeling of $S_{m, 3}$ with valence. $k=p+q-s=n+n-1+\frac{n+8}{3}=\frac{2 n-5}{3}$, when $m \leq 3$ is odd.
Example 1. Figure 1 shows the RSEM labeling of the lobster T with $n=13$.

Figure 1. The RSEM labeling of the lobster T with $n=13$.

Theorem 2. The lobster T characterized above is RSEM for total positive numbers $n>3$.
Proof. We consider two cases.
Case 1: If n is even.
Let C_{i} denotes that the termination vertex of T at $b_{i}, 1 \leq i \leq n$.

Characterize a vertex with labeling $f: V(T) \rightarrow\{1,2,3, \ldots, 3 n\}$ such that

$$
\begin{aligned}
& f\left(a_{i}\right)= \begin{cases}i, & \text { if } i \text { is even, } 1 \leq i \leq n \\
2 n+i, & \text { if } i \text { is odd, } 1 \leq i \leq n\end{cases} \\
& f\left(b_{i}\right)= \begin{cases}i, & \text { if } i \text { is even }, 1 \leq i \leq n \\
2 n+i, & \text { if } i \text { is odd, } 1 \leq i \leq n\end{cases} \\
& f\left(c_{1}\right)=2 n \\
& f\left(c_{2 i+3}\right)=\frac{3 n}{2}(1+i) \text { for } 0 \leq i \leq \frac{n-4}{2} \\
& f\left(c_{n \cong 2 i}\right)=\frac{3 n}{2}+i \text { for } 0 \leq i \leq \frac{n-2}{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
S & =\{f(x)+f(y): x y \in E(T), n \text { is even, } n \geq 3\} \\
& =\{2 n-2,2 n-1,2 n, 2 n+1, \ldots, 5 n-4\} .
\end{aligned}
$$

Accordingly, by using the Lemma 1, f extend to a RSEM labeling of T with valence $k=p+q-s=n+3$.
Example 2. Figure 2 shows the RSEM labeling of the lobster T with $n=11$.

Figure 2. The RSEM labeling of the lobster T with $n=11$.

Case 2: If n is odd.
Define the vertex labeling $f: V(T) \rightarrow\{1,2,3, \ldots, 3 n\}$ here

$$
\begin{aligned}
& f\left(a_{i}\right)= \begin{cases}i, & \text { if } \text { i is even }, 1 \leq i \leq n \\
n+i, & \text { if } i \text { is odd, } 1 \leq i \leq n\end{cases} \\
& f\left(b_{i}\right)= \begin{cases}i, & \text { if } \text { is even }, 1 \leq i \leq n \\
n+i, & \text { if } \text { is odd, } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
f\left(c_{1}\right) & =3 n \\
f\left(c_{2 i+1}\right) & =3 n-i \text { for } 1 \leq i \leq \frac{n-1}{2} \\
f\left(c_{n-2 i+1}\right) & =2 n+i \text { for } 1 \leq i \leq \frac{n-1}{2} .
\end{aligned}
$$

Since,

$$
\begin{aligned}
S & =\{f(x)+f(y): x y \in E(T), n \text { is odd, } n \geq 3\} \\
& =\{n+2, n+3,2 n, \ldots, 4 n,\} .
\end{aligned}
$$

Accordingly, by using the Lemma $1, f$ extend to a RSEM labeling of T with valence $k=p+q-s=$ $2 n-1$.
Example 3. Figure 3 shows the RSEM labeling of the lobster T with $n=9$.

Figure 3. The RSEM labeling of the lobster T with $n=9$.

Definition 2. Let $\left\{a_{1} k_{1, n_{1}}, a_{2} k_{1, n_{2}}, \ldots, a_{p} k_{1, n_{p}}\right\}$ be a family of stars where $a_{i} k_{1, n_{i}}, a_{i}$ denotes the isomorphic disjoint copies of $k_{1, n_{i}}$ for $1 \leq i \leq p$ and $a_{i} \geq 1$. Let $k_{1, n_{1}}$ and $v_{i j k}$ be the end vertices of $H_{i j}$ be the $j^{\text {th }}$ the isomorphic, $k=1,2, \ldots, n_{i}$ if one end vertex of each star which is adjacent to a vertex w adjoin. Thus the trees subsequently defined by $H_{w}^{a_{1}+a_{2}+--+^{-} a_{p}}$. These kinds of trees are prefers to as the banana tree.
Theorem 3. The banana tree $H_{w}^{a_{1}+a_{2}+--\mp a_{p}}$ corresponding to the family of stars $\left\{a_{1} k_{1, n_{1}}, a_{2} k_{1, n_{2}}, \ldots, a_{p} k_{1, n_{p}}\right\}, 1<n_{1}<n_{2}<\ldots<n_{p}, p \geq 2$ and $a_{1}+a_{2}+\ldots+a_{i} \geq n_{i}, i=1,2, \ldots, p$ is RSEM.

Proof. Conider the family of stars $\left\{a_{1} k_{1, n_{1}}, a_{2} k_{1, n_{2}}, \ldots, a_{p} k_{1, n_{p}}\right\}$. Let $k_{1, n_{i}}, i=1,2, \ldots, p$, is $H_{i j}$ be the $j^{\text {th }}$ the isomorphic copy. Assume $H_{i j}$ is the end-vertices of $v_{i j k}, k=1,2,3,4, \ldots, n_{i}$ and $u_{i j}$ be the $H_{i j}$ is center. Let the new vertex be w which is adjacent to one end vertex $v_{i j_{\beta_{i j}}}$ from every star $H_{i j}$ of the family where $\beta_{i j}=a_{0}+a_{1}+\ldots+a_{i-1}+j$ and $a_{0}=0$. The new tree obtained is denoted by $H_{w}^{a_{1}+a_{2}+--\mp a_{p}}$. and has $a_{1}\left(n_{1}+1\right)+a_{2}\left(n_{2}+1\right)+\ldots+a_{p}\left(n_{p}+1\right)$ vertices and $a_{1} n_{1}+a_{2} n_{2}+\ldots+a_{p} n_{p}+\left(a_{1}+a_{2}+\ldots+a_{p}\right)$ edges.

Let $p=a_{1}\left(n_{1}+1\right)+a_{2}\left(n_{2}+1\right)+\ldots+a_{p}\left(n_{p}+1\right)$.

Define a vertex labeling $f: V\left(H_{w}^{a_{1}+a_{2}+--\mp a_{p}}\right) \rightarrow\left\{1,2, \ldots, p_{1}\right\}$, such that

$$
\begin{aligned}
f\left(v_{1 j k}\right) & =(j-1) n_{1}+k \text { for } 1 \leq j \leq a_{1}, 1 \leq k \leq n_{1} . \\
f\left(v_{i j k}\right) & =f\left(v_{i-1 a_{i-1} n_{i-1}}\right)+(j-1) n_{i}+k, \text { for } \\
& 2 \leq i \leq p, 1 \leq j \leq a_{1}, 1 \leq k \leq n_{1} . \\
f(w) & =f\left(v_{p a_{p} n_{p}}\right)+1 . \\
f\left(u_{i j}\right) & =f(w)+\left(a_{0}+a_{1}+\ldots+a_{i-1}+j\right), \\
& 2 \leq i \leq p, 1 \leq j \leq a_{1} .
\end{aligned}
$$

Note that, $S=\left\{a_{1} n_{1}+a_{2} n_{2}+\ldots+a_{p} n_{p}+2, a_{2} n_{2}+\ldots+a_{p} n_{p}+3, \ldots, 2\left(a_{1} n_{1}+a_{2} n_{2}+\ldots+a_{p} n_{p}\right)+\left(a_{1}+\ldots+a_{p}\right)+1\right\}$. Accordingly, by using the Lemma $1, f$ extend to a RSEM labeling of $H_{w}^{a_{1}+a_{2}+--\mp a_{p}}$ with valence $k=$ $p+q-s=a_{0}+a_{1}+\ldots+a_{p}$.

Definition 3. Consider the graph $G(t, m)=P_{1} \times C_{2 m+1}$ where x have t vertices $(t \geq 2)$ is an odd cycle when the cartesian product of the path. Consider a new graph $G(t, m, n)$ by defining the new pendant edges n at each vertex of the furthest odd numbered cycle in $G(t, m)$.
Theorem 4. The graph $G(t, m, n)$ is RSEM, for $t \geq 2$ and $m \geq 2$.
Proof. Let $C_{2 m+1}$ be the fixed vertex of innermost of v_{11} and we will collect the different types of vertices $v_{12}, v_{13}, \ldots, v_{1(2 m+1)}$ in clock-wise. For $2 \leq i \leq t$, let $v_{i 1}$ be the $i^{\text {th }}$ copy of $C_{2 m+1}$ vertex was end to end to the vertex $v_{(i-1)(2 m+1)}$ in the $(i-1)^{t h}$ copy of $C_{2 m+1}$ and take the other is adjacent to the vertex $v_{i j k}$ is the outermost $C_{2 m+1}$ for $1 \leq k \leq n$ and $1 \leq j \leq(2 m+1)$.

Define the vertex marking $f: V(G(t, m, n)) \rightarrow\{1,2, \ldots,(2 m+1)(t+n)\}$ such that

$$
f\left(v_{i j}\right)= \begin{cases}(i-1)(2 m+1)+\frac{j+1}{2}, & \text { if } j \text { is odd, }, \\ (i-1)(2 m+1)+m+\frac{j+2}{2}, & \text { if } j \text { is even },\end{cases}
$$

for $1 \leq i \leq t$ and $1 \leq j \leq(2 m+1), f\left(v_{i j k}\right)=(2 m+1)(t+k-1)+(2 m+2-j)$ for $1 \leq j \leq(2 m+1)$ and $1 \leq k \leq n$.

Note that

$$
\begin{aligned}
S & =\{f(x)+f(y): x y \in E(G(t, m, n)), t \geq 2, m \geq 2\} \\
& =\{m+2, m+3, \ldots,(m+1)+(2 m+1)(2 t+n-1)\}
\end{aligned}
$$

is a set of all consecutive integers.
Accordingly, by using the Lemma $1, f$ extend to a RSEM labeling of $G(t, m, n)$ with valence $k=$ $p+q-s=(2 m+3) n+(2 t+m)$, for $t \geq 2$ and $m \geq 2$.

Example 4. Figure 4 shows the RSEM labeling of the graph $G(3,2,2)$ with $n=22$.

Figure 4. The RSEM labeling of the graph $G(3,2,2)$ with $n=22$.

Theorem 5. The graph $C_{n} \odot P_{2}$ is RSEM for all odd $n \geq 3$.
Proof. Let $n=2 m+1 \geq 3$, here n is an odd integer. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n}. Now $c_{n} \odot P_{2}$ is the graph defined by the attaching P_{2} to every vertex of C_{n}. Let the rim vertices v_{i} of C_{n} in $C_{n} \odot P_{2}$ is adjacent to the vertices $a_{i}, b_{i}, 1 \leq i \leq n$. The graph $C_{n} \odot P_{2}$ has $3 n$ vertices and $4 n$ edges. Consider a labeling of vertex $f: V\left(C_{n} \odot P_{n} \rightarrow\{1,2, \ldots, 3 n\}\right)$ such that

$$
\begin{aligned}
f\left(a_{i}\right) & = \begin{cases}\frac{i+1}{2}, & \text { if } i \text { is odd }, \\
m+\frac{i+2}{2}, & \text { if i is even, }\end{cases} \\
f\left(a_{i}\right) & =2 n+1-i \text { for } 1 \leq i \leq n \\
f\left(b_{2 i}\right) & =2 n+i \text { for } 1 \leq i \leq m \\
f\left(b_{1}\right) & =2 n+m+1 \\
f\left(b_{2 i+1}\right) & =2 n+m+1+i \text { for } 1 \leq i \leq m .
\end{aligned}
$$

Define

$$
\begin{aligned}
S & =\left\{I(x)+f(y): x y \in E\left(c_{n} \odot p_{2}\right)\right\} \\
& =\{m+2, m+3, m+4, \ldots, m+4 n+1\}
\end{aligned}
$$

is a set of $4 n$ successive integers.

Accordingly, by using the Lemma 1 , f extend to a RSEM labeling of $C_{n} \odot P_{2}$ with valence $k=$ $p+q-s=\frac{15 n-1}{2}$, when $n \geq 3$ is odd number.
Example 5. Figure 5 shows the RSEM labeling of the graph $C_{5} \odot P_{2}$ with $n=12$.

Figure 5. The RSEM labeling of the graph $C_{5} \odot P_{2}$ with $n=12$.

Theorem 6. The graph $C_{n} \odot P_{3}$ is RSEM for every odd $n \geq 3$.
Proof. Let C_{n} be an odd cycle with $n=2 m+1 \geq 3$ vertices. The cycle C_{n} with the vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let the path of three vertices is P_{3}. Now $4 n$ vertices and $6 n$ edges is a graph $C_{n} \odot P_{3}$ is obtained by attaching P_{3}.

Consider a vertex labeling $f: V\left(C_{n} \odot P_{3}\right) \rightarrow\{1,2, \ldots, 4 n\}$ such that

$$
f\left(v_{i}\right)=\left\{\begin{array}{lc}
\frac{i+1}{2}, & \text { if } i \text { is odd }, \\
m+\frac{i+2}{2}, & \text { if } \text { is even } .
\end{array}\right.
$$

If n is odd, Then m even for f-values and the rim vertices of f-values is $m+1$ odd. Let us the label $3 n$ vertices outside the rim of C_{n} in $C_{n} \odot P_{3}$ as follows. Let $u_{1}, u_{2}, \ldots u_{m}$, be the vertex degree two outside the rim, f-values are $2 m, 2 m-2, \ldots, 4,2$ is adjacent to the rim vertices respectively. Again let $u_{n+1}, u_{n+2}, \ldots u_{n+m}$ be the remaining vertices of degree two, whose f-values are $2 m, 2 m-2, \ldots, 4,2$ is adjacent to the rim vertices respectively. Let $u_{m+1}, u_{m+2}, \ldots, u_{n}$ be the vertex degree two outside the rim, whose f-values are $n, n-2, \ldots, 3,1$ is adjacent to the rim vertices respectively. Also, let $u_{n+m+1}, u_{n+m+2}, \ldots, u_{2 n}$ be the continuing vertex degree two outside the rim, whose f-values are $n, n-$ $2, \ldots, 3,1$ is adjacent to the rim vertices respectively. Let $u_{2 n+1} \cdot u_{2 n+2}, \ldots, u_{2 n+m+1}$ be the vertices of degree
three outside the rim whose f-values are $n, n-2, \ldots, 3,1$ is adjacent to the rim vertices respectively. Finally, let $u_{2 n+m+2}, u_{2 n+m+3}, \ldots, u_{3 n}$ be the vertices of degree three whose f-values are $2 m, 2 m-2, \ldots, 4,2$ is adjacent to the rim vertices respectively.

Consider $f\left(u_{i}\right)=n+i$ for $1 \leq i \leq 3 n$.
Note that

$$
\begin{aligned}
S & =\left\{f(x)+f(y): x y \in E\left(C_{n} \odot P_{3}\right)\right\} \\
& =\{m+2, m+3, \ldots, m+6 n+1\}
\end{aligned}
$$

is a set of all consecutive integers.
Accordingly, by using the Lemma $1, f$ extend to a RSEM labeling of $C_{n} \odot P_{3}$ with valence $k=$ $p+q-s=\frac{7 n-1}{2}$.
Example 6. Figure 6 shows the RSEM labeling of the graph $C_{7} \odot P_{3}$ with $n=24$.

Figure 6. The RSEM labeling of the graph $C_{7} \odot P_{3}$ with $n=24$.

Definition 4. Let L_{n} denote the ladder graph $P_{n} \times P_{2}$ and $L_{n} \odot K_{1}$ be the graph containing the connecting an edge at every vertex of L_{n}.

Theorem 7. The graph $L_{n} \odot K_{1}$ is RSEM for odd n.
Proof. Let $V\left(\left(L_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n} ; v_{1}, v_{2}, \ldots, v_{n}\right\}\right.$ and $E\left(\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{j} v_{j}, 1 \leq i \leq(n-1), 1 \leq j \leq\right.\right.$ $n\}$.

Let u_{i}^{1} and v_{i}^{1} be the vertices is adjacent to the u_{i} and v_{i} respectively in $L_{n} \odot K_{1}$. Then $V\left(\left(L_{n} \odot K_{1}\right)=\right.$ $\left\{u_{i}, v_{i}, u_{i}^{1}, v_{i}^{1}: 1\right.$ leqi $\left.\leq n,\right\}$. and $V\left(\left(L_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{j} v_{j}, u_{j} u_{j}^{1}, v_{j} v_{j}^{1}, 1 \leq i \leq(n-1), 1 \leq j \leq n\right\}\right.$. The graph $L_{n} \odot K_{1}$ has $4 n$ vertices and $5 n-2$ edges.

Define $f: V\left(L_{n} \odot K_{1}\right) \rightarrow\{1,2, \ldots, 4 n\}$ is the vertex labeling where

$$
f(x)= \begin{cases}\frac{4 n+i+1}{2}, & \text { if } x=u_{i} i \text { is odd and } 1 \leq i \leq n \\ \frac{5 n+i+1}{2}, & \text { if } x=u_{i} i \text { is even and } 1 \leq i \leq n \\ \frac{3 n+i}{2}, & \text { if } x=v_{i} i \text { is odd and } 1 \leq i \leq n \\ \frac{2 n+i}{2}, & \text { if } x=v_{i} i \text { is even and } 1 \leq i \leq n \\ n, & \text { if } x=v_{1}^{1} \\ \frac{7 n+1}{2}, & \text { if } x=v_{2}^{1} \\ i, & \text { if } x=v_{2 i+1}^{1}, 1 \leq i \leq\left(\frac{n-1}{2}\right) \\ \frac{n+2 i-1}{2}, & \text { if } x=v_{2 i}^{1}, 2 \leq i \leq\left(\frac{n-1}{2}\right) \\ \frac{n+2 i+1}{2}, & \text { if } x=u_{2 i-1}^{1}, 2 \leq i \leq\left(\frac{n-1}{2}\right) \\ 3 n+1+i, & \text { if } x=u_{2 i}^{1}, 1 \leq i \leq\left(\frac{n-3}{2}\right) \\ \frac{n+1}{2}, & \text { if } x=u_{n-1}^{1} \\ 3 n+1, & \text { if } x=u_{n}^{1} .\end{cases}
$$

Note that $S=\left\{f(x)+f(y): x y \in E\left(L_{n} \odot K_{1}\right)\right\}=\left\{\frac{3 n+5}{2}, \frac{3 n+7}{2}, \ldots, \frac{13 n-1}{2}\right\}$ is a set of alternative integers.
Accordingly, by using the Lemma 1, f extend to a RSEM labeling of $L_{n} \odot K_{1}$ with valence $k=$ $p+q-s=\frac{5 n-3}{2}$, for all odd n. Accordingly, Lemma 1, if G is a RSEM labeling of (p, q) graph then $q \leq 2 p-3$.
The next theorem gives a RSEM graph with $q=2 p-3$.
Example 7. Figure 7 shows the RSEM labeling of the graph $L_{5} \odot K_{1}$ with $n=11$.

Figure 7. The RSEM labeling of the graph $L_{5} \odot K_{1}$ with $n=11$.

Theorem 8. The total graph $T\left(P_{n}\right)$ is RSEM for every integer n.
Proof. Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$ and e_{j} be the edge u_{j}, u_{j+1} for $1 \leq j \leq(n-1)$. Then the vertex and edge set of $T\left(P_{n}\right)$ as denoted as $V\left(T\left(P_{n}\right)\right)=\left\{u_{j}, e_{j}: 1 \leq j \leq n, 1 \leq j \leq(n-1)\right.$.

Note that $T\left(P_{n}\right)$ has $2 n-1$ vertices and $4 n-5$ edges, then $q=2 p-3$.

Now define $f: V\left(T\left(P_{n}\right)\right) \rightarrow\{1,2, \ldots,(2 n-1)\}$ as the vertex labeling such that

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i-1, \text { for } 1 \leq i \leq n \\
& f\left(e_{i}\right)=2 i, \text { for } 1 \leq i \leq(n-1) .
\end{aligned}
$$

Since $S=\left\{f(x)+f(y): x y \in E\left(T\left(P_{n}\right)\right)\right\}=\{3,4, \ldots,(4 n-3)\}$ is a set of successive integers.
Accordingly, by using the Lemma $1, f$ extend to a RSEM labeling of $T\left(P_{n}\right)$ with valence $k=2 n-3$.
Example 8. Figure 8 shows the RSEM labeling of the graph $T\left(P_{4}\right)$ with $n=5$.

Figure 8. The RSEM labeling of the graph $T\left(P_{4}\right)$ with $n=5$.

Theorem 9. The cycle graph C_{n} with a chord of distance 3 consisting two vertices is RSEM for each odd number n, where $n>7$.

Proof: Let G be the graph and C_{n} is a chord with consisting two vertices of $C_{n}(n \geq 7)$ at a distance 3 . Let $(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, join the vertices v_{1} and v_{n-2} as a chord for G so that $d\left(v_{1}, v_{n}\right)=3$. Note that G has n vertices and $n+1$ edges. Define $f: V(G) \rightarrow\{1,2, \ldots, n\}$ the vertex labeling such that

$$
f\left(v_{i}\right)= \begin{cases}\frac{i+1}{2}, & \mathrm{i} \text { is odd } \\ \frac{n+i+1}{2}, & \mathrm{i} \text { is even } .\end{cases}
$$

Note that $S=\{f(x)+f(y): x y \in E(G)\}=\left\{\frac{n+1}{2}, \frac{n+3}{2}, \ldots, \frac{3 n+1}{2}\right\}$ is a set of successive integers.
Accordingly, by using the Lemma 1, f extend to a RSEM labeling of G with valence $k=p+q-s=$ $\frac{n+1}{2}$.
Example 9. Figure 9 shows the RSEM labeling of the graph C_{7} with $n=4$.

Figure 9. The RSEM labeling of the graph C_{7} with $n=4$.

Theorem 10. Let $G_{1}, G_{2}, \ldots, G_{m}$ be m disconnect and n cycles having vertex sets $v_{i}=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}\right\}$, $i=1,2, \ldots, m$ here n is odd and $n \geq 3$. Let G the graph attained by connecting v_{n}^{1} to $v_{j}^{2}, 1 \leq j \leq n$ and v_{n}^{k} to $v_{j}^{k+1}, 1 \leq j \leq n, 2 \leq j \leq(m-1)$. Then G is a RSEM graph.
Proof. The graph G has containing $m n$ vertices and $n(2 m-1)$ edges.
Consider $f: V(G) \rightarrow\{1,2, \ldots, m n\}$ a vertex labeling such that
$f\left(v_{i}^{1}\right)= \begin{cases}\frac{i+1}{2}, & \text { if i is odd, } 1 \leq i \leq n \\ \frac{n+1+i}{2}, & \text { if i is even, } 1 \leq i \leq n\end{cases}$
$f\left(v_{i}^{r}\right)=5 r-4$, if $2 \leq r \leq m$
$f\left(v_{i}^{r}\right)= \begin{cases}f\left(v_{1}^{r}\right)+\frac{i-1}{2}, & \text { if } i \text { is odd, } 1 \leq i \leq n, 2 \leq r \leq m \\ f\left(v_{n}^{r}\right)+\frac{i}{2}, & \text { if } i \text { is even, } 2 \leq i \leq n, 2 \leq r \leq m .\end{cases}$
It is easy to see that $S=\{f(x)+f(y): x y \in E(G)\}=\left\{\frac{n+3}{2}, \frac{n+5}{2}, \ldots, n+10 m-7\right\}$ is a set of $n(2 m-1)$ successive integers.

Accordingly, by using the Lemma 1, f extend to a RSEM labeling of G with valence $k=p+q-s=$ $n(3 m-2)-10 m+7$.

Example 10. Figure 10 shows the RSEM labeling of the graph G_{1} with $n=4$.

Figure 10. The RSEM labeling of the graph G_{1} with $n=4$.

3. Conclusions

Permitting to the outcome and argument we establish reverse edge magic valuation of the 3-star $S_{m, 3}$ if m is odd, the lobster T characterized above is RSEM for all integers $n>3$, the banana tree $H_{w}^{a_{1}+a_{2}+-++a_{p}}$. for $t \geq 2$ and $m \geq 2$ the graph $G(t, m, n)$ the graphs $C_{n} \odot P_{2}, C_{n} \odot P_{3}$ for all odd $m \geq 3$, the graph $L_{n} \odot K_{1}$ for odd n, the total graph $T\left(P_{n}\right)$ for any positive integer n and the graph C_{n} is a cycle with a chord conncection two vertices at the distance of 3 units for all odd $n, n>7$.

References

1. A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461. doi: 10.4153/CMB-1970-084-1.
2. H. Enomoto, A. S. Lladó, T. Nakamigawa, G. Ringel, Super edge-magic graphs, SUT J. Math., 34 (1998), 105-109.
3. R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings, Discrete Math., 231 (2001), 153-168. doi: 10.1016/S0012-365X(00)00314-9.
4. R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, Mgical coronations of graphs, Australas. J. Comb., 26 (2002), 199-208.
5. V. Yegnanarayanan, On magic graphs, Utilitas Math., 59 (2001), 181-204.
6. R. M. Figueroa-Centenoa, R. Ichishimab, F. A. Muntaner-Batle, On super edge-magic graphs, Ars Comb., 64 (2002), 81-95.
7. J. C. Bermond, Graceful graphs, radio antennae and French windmills, In: Proceedings one day combinatorics conference, Research notes in mathematics, Pitman, 34 (1979), 18-37.
8. G. Ringel, A. Llado, Another tree conjecture, Bull. Inst. Combin. Appl., 188 (1996), 83-85.
9. K. Kathiresan, Subdivisions of ladders are graceful, Indian J. Pure Appl. Math., 23 (1992), 21-23.
10. R. Balakrishnan, R. Sampathkumar, Decompositions of regular graphs into $k_{n}^{c} \vee 2 k_{2}$, Discrete Math., 156 (1996), 19-28. doi: 10.1016/0012-365X(94)00026-F.
11. R. Balakrishna, A. Selvam, V. Yegnanarayanan, Some results on elegantgraphs, Indian J. Pure Appl. Math., 28 (1997), 905-916.

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

