Research article Special Issues

Novel higher order iterative schemes based on the $ q- $Calculus for solving nonlinear equations

  • Received: 17 August 2021 Accepted: 22 November 2021 Published: 02 December 2021
  • MSC : 65Yxx, 65Hxx, 65Dxx

  • The conventional infinitesimal calculus that concentrates on the idea of navigating the $ q- $symmetrical outcomes free from the limits is known as Quantum calculus (or $ q- $calculus). It focuses on the logical rationalization of differentiation and integration operations. Quantum calculus arouses interest in the modern era due to its broad range of applications in diversified disciplines of the mathematical sciences. In this paper, we instigate the analysis of Quantum calculus on the iterative methods for solving one-variable nonlinear equations. We introduce the new iterative methods called $ q- $iterative methods by employing the $ q- $analogue of Taylor's series together with the inclusion of an auxiliary function. We also investigate the convergence order of our newly suggested methods. Multiple numerical examples are utilized to demonstrate the performance of new methods with an acceptable accuracy. In addition, approximate solutions obtained are comparable to the analogous solutions in the classical calculus when the quantum parameter $ q $ tends to one. Furthermore, a potential correlation is established by uniting the $ q- $iterative methods and traditional iterative methods.

    Citation: Gul Sana, Muhmmad Aslam Noor, Dumitru Baleanu. Novel higher order iterative schemes based on the $ q- $Calculus for solving nonlinear equations[J]. AIMS Mathematics, 2022, 7(3): 3524-3553. doi: 10.3934/math.2022196

    Related Papers:

  • The conventional infinitesimal calculus that concentrates on the idea of navigating the $ q- $symmetrical outcomes free from the limits is known as Quantum calculus (or $ q- $calculus). It focuses on the logical rationalization of differentiation and integration operations. Quantum calculus arouses interest in the modern era due to its broad range of applications in diversified disciplines of the mathematical sciences. In this paper, we instigate the analysis of Quantum calculus on the iterative methods for solving one-variable nonlinear equations. We introduce the new iterative methods called $ q- $iterative methods by employing the $ q- $analogue of Taylor's series together with the inclusion of an auxiliary function. We also investigate the convergence order of our newly suggested methods. Multiple numerical examples are utilized to demonstrate the performance of new methods with an acceptable accuracy. In addition, approximate solutions obtained are comparable to the analogous solutions in the classical calculus when the quantum parameter $ q $ tends to one. Furthermore, a potential correlation is established by uniting the $ q- $iterative methods and traditional iterative methods.



    加载中


    [1] S. Abbasbandy, Improving newton-raphson method for nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput., 145 (2003), 887–893. doi: 10.1016/S0096-3003(03)00282-0.
    [2] A. R. Alharbi, M. I. Faisal, F. A. Shah, M. Waseem, R. Ullah, S. Sherbaz, Higher order numerical approaches for nonlinear equations by decomposition technique, IEEE Acess., 7 (2019), 44329–44337. doi:10.1109/ACCESS.2019.2906470. doi: 10.1109/ACCESS.2019.2906470
    [3] F. Ali, W. Aslam, I. Khalid, A. Nadeem, Iteration methods with an auxiliary function for nonlinear equations, J. Math, 2020 (2020), 1–15. doi.org/10.1155/2020/735640.
    [4] C. Chun, Iterative methods improving Newton's method by the decomposition method, Comput. Math. Appl., 50 (2005), 1559–1568. doi: 10A016/j.camwa.2005.08.022.
    [5] G. Sana, M. A. Noor, K. I. Noor, Some multistep iterative methods for nonlinear equation using quadrature rule, Int. J. Anal. App., 18 (2020), 920–938. doi:10.28924/2291-8639-18-2020-920. doi: 10.28924/2291-8639-18-2020-920
    [6] P. Sivakumar, K. Madhu, J. Jayaraman, Optimal eighth and sixteenth order iterative methods for solving nonlinear equation with basins of attraction, Appl. Math. E-notes., 21 (2021), 320–343.
    [7] S. Huang, A. Rafiq, M. R. Shahzad, F. Ali, New higher order iterative methods for solving nonlinear equations, Hacettepe. J. Math. Stat., 47 (2018), 77–91. doi: 10.15672/HJMS.2017.449.
    [8] M. A. Noor, M. Waseem, K. I. Noor, M. A. Ali, New iterative technique for solving nonlinear equations, Appl. Math. Comput., 265 (2015), 1115–1125. doi:10.1016/j.amc.2015.05.129. doi: 10.1016/j.amc.2015.05.129
    [9] F. A. Shah, M. A. Noor, Some numerical methods for solving nonlinear equations by using the decomposition tecnique, Appl. Math. Comput., 251 (2015), 378–386. doi:10.1016/j.amc.2014.11.065. doi: 10.1016/j.amc.2014.11.065
    [10] G. Sana, P. O. Mohammed, D. Y. Shin, M. A. Noor, M. S. Oudat, On iterative methods for solving nonlinear equations in quantum Calculus, Fractal Fract., 5 (2021), 1–18. doi.org/10.3390/fractalfract5030060.
    [11] M. O. Sadik, B. O. Orie, Application of $q-$calculus to the solution of partial $q-$differential equations, Appl. Math., 12 (2021), 669–678. doi:10.4236/am.2021.128047. doi: 10.4236/am.2021.128047
    [12] T. Abdeljawad, M. E. Samei, Applying quantum calculus for the existance of solution of $q-$integro differential equations with three criteria, Discrete Contin. Dyn. Syst., 14 (2021), 3351–3386. doi: 10.3934/dcdss.2020440. doi: 10.3934/dcdss.2020440
    [13] S. Liang, M. E. Samei, New approach to solutions of a class of singular fractional $q-$differential problem via quantum calculus, Adv. Differ. Equ., 14 (2020), 1–22. doi: 10.1186/s13662-019-2489-2.
    [14] A. Naseem, M. A. Rehmani, T. Abdeljawad, Some new iterative algorithms for solving one-dimensional nonlinear equations and their graphical representation, IEEE Acess., 9 (2021), 8615–8624. doi:10.1109/ACCESS.2021.3049428. doi: 10.1109/ACCESS.2021.3049428
    [15] Z. Noeiaghdam, M. Rahmani, T. Allahviranloo, Introduction of the numerical methods in quantum calculus with uncertainty, J. Math. Model., 9 (2021), 303–322. doi: 10.22124/JMM.2020.17822.1534.
    [16] J. F. Traub, Iterative Methods for Solution of Equations; Prentice-Hall, Englewood Cliffs, NJ, 1964.
    [17] A. Naseem, M. A. Rehmani, T. Abdeljawad, Y. Chu, Novel iteration schemes for computing zeros of nonlinear equations with engineering applications and their dynamics, IEEE Acess., 9 (2021), 92246–92262. doi:10.1109/ACCESS.2021.3091473. doi: 10.1109/ACCESS.2021.3091473
    [18] O. S. Solaiman, I. Hashim, Optimal eighth-order solver for nonlinear equations with applications in chemical engineering, Intell. Autom. Soft Comput., 13 (2020), 87–93. doi:10.32604/iasc.2021.015285. doi: 10.32604/iasc.2021.015285
    [19] B. Neta, A new derivative-free method to solve nonlinear equations, Mathematics, 9 (2021), 1–5. doi:10.3390/math9060583. doi: 10.3390/math9060583
    [20] S. A. Sariman, I. Hashim, New optimal Newton-Householder methods for solving nonlinear equations and their dynamics, Comput. Mater. Contin., 65 (2020), 69–85. doi: 10.32604/cmc.2020.010836.
    [21] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. doi:10.1016/j.jmaa.2005.05.009. doi: 10.1016/j.jmaa.2005.05.009
    [22] M. Saqib, M. Iqbal, Some multi-step iterative methods for solving nonlinear equations, Open J. Math. Sci., 1 (2017), 25–33. doi: 10.30538/oms2017.0003. doi: 10.30538/oms2017.0003
    [23] F. Ali, W. Aslam, K. Ali, M. A. Anwar, A. Nadeem, New family of iterative methods for Solving nonlinear models, Discrete. Dyn. Nat. Soc., 2018 (2018), 1–12. doi:10.1155/2018/9619680. doi: 10.1155/2018/9619680
    [24] T. Ernst, A new notation for $q-$Calculus a new $q-$Taylor's formula, U.U.D.M. Report, 1999, 1–28.
    [25] E. Koelink, Eight lectures on quantum groups and q-special functions. Revista. Colombiana. de Mathematicas., 30 (1996), 93–180.
    [26] A. Erzan, Finite $q-$differences and the discrete renormalization group, Phys. Lett. A., 225 (1997), 235–238. doi:10.1016/s0375-9601(96)00881-x. doi: 10.1016/s0375-9601(96)00881-x
    [27] T. H. Koornwinder, R. F. Swarttouw, On $q-$analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc., 333 (1992), 445–461. doi:10.1090/S0002-9947-1992-1069750-0. doi: 10.1090/S0002-9947-1992-1069750-0
    [28] J. H. He, A new iteration method for solving algebraic equations, Appl. Math. Comput., 135 (2003), 81–84. doi: S0096-3003(01)00313-7.
    [29] F. H. Jackson, A $q-$form of Taylors formula. Mess. Math., 38 (1909), 62–64.
    [30] S. C. Jing, H. Y. Fan, $q-$Taylor's Formula with its $q-$remainder, Commun. Theor. Phys., 23 (1995), 117–120.
    [31] T. Ernst, A method for $q-$calculus, J. Non. Math. Phy., 10 (2003), 487–525.
    [32] P. Singh, P. K. Mishra, R. S. Pathak, $q-$iterative methods. IOSR. J. Math., 9 (2013), 6–10.
    [33] H. Jafari, S. J. Johnston, S. M. Sani, D. Baleanu, A decomposition method for solving $q-$difference equations, Appl. Math. Inf. Sci., 9 (2015), 2917–2920. doi:10.12785/amis/090618. doi: 10.12785/amis/090618
    [34] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
    [35] R. L. Burden, J. D. Faires, Numerical Analysis, Boston, MA, USA: PWS Publishing Company, 2001.
    [36] Y. Cherruault, Convergence of Adomians method, Kybernetes, 18 (1989), 31–38. doi.org/10.1108/eb005812.
    [37] V. D. Waals, J. Diderik, Over de Continuiteit van den Gasen Vloeistoftoestand (on the continuity of the gas and liquid state), Ph.D. thesis, Leiden, The Netherlands, 1873.
    [38] G. V. Balaji, J. D. Seader, Application of interval Newton's method to chemical engineering problems, Reliable Comput., 1 (1995), 215–223. doi:10.1007/BF02385253. doi: 10.1007/BF02385253
    [39] M. Shacham, Numerical solution of constrained non-linear algebraic equations, Int. J. Numer. Methods. Eng., 23 (1998), 1455–1481. doi:10.1002/nme.1620230805. doi: 10.1002/nme.1620230805
    [40] O. S. Solaiman, I. Hashim, An iterative scheme of arbitrary odd order and its basins of attraction for nonlinear systems, Comput. Mater. Contin. Computers, 66 (2021), 1427–1444. doi: 10.32604/cmc.2020.012610.
    [41] W. C. Rheinboldt, Methods for solving systems of nonlinear equations, SIAM, Philadelphia, 1998.
    [42] H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional $q-$calculus and their applications in Geometric function theory of Complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0.
    [43] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear. Convex Anal., 22(2021), 1501–1520.
    [44] H. M. Srivastava, J. Iqbal, M. Arif, A. Khan, Y. S. Gasimov, R. Chinram, A new application of Gauss quadrature method for solving systems of nonlinear equations, Symmetry., 13 (2021), 432, 1–12. doi: 10.3390/sym13030432.
    [45] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional $q-$calculus operators, Miskolc. Math. Notes., 20 (2019), 1245–1260. doi: 10.18514/MMN.2019.3046.
    [46] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Engrg. Comput., 5(2021), 135–166. doi:10.25073/jaec.202153.340. doi: 10.25073/jaec.202153.340
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1767) PDF downloads(123) Cited by(1)

Article outline

Figures and Tables

Tables(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog