Research article

B-spline estimation in varying coefficient models with correlated errors

  • Received: 13 August 2021 Accepted: 23 November 2021 Published: 02 December 2021
  • MSC : 62G08, 62M10, 65D07

  • The varying coefficient model assumes that the regression function depends linearly on some regressors, and that the regression coefficients are smooth functions of other predictor variables. It provides an appreciable flexibility in capturing the underlying dynamics in data and avoids the so-called "curse of dimensionality" in analyzing complex and multivariate nonlinear structures. Existing estimation methods usually assume that the errors for the model are independent; however, they may not be satisfied in practice. In this study, we investigated the estimation for the varying coefficient model with correlated errors via B-spline. The B-spline approach, as a global smoothing method, is computationally efficient. Under suitable conditions, the convergence rates of the proposed estimators were obtained. Furthermore, two simulation examples were employed to demonstrate the performance of the proposed approach and the necessity of considering correlated errors.

    Citation: Yanping Liu, Juliang Yin. B-spline estimation in varying coefficient models with correlated errors[J]. AIMS Mathematics, 2022, 7(3): 3509-3523. doi: 10.3934/math.2022195

    Related Papers:

  • The varying coefficient model assumes that the regression function depends linearly on some regressors, and that the regression coefficients are smooth functions of other predictor variables. It provides an appreciable flexibility in capturing the underlying dynamics in data and avoids the so-called "curse of dimensionality" in analyzing complex and multivariate nonlinear structures. Existing estimation methods usually assume that the errors for the model are independent; however, they may not be satisfied in practice. In this study, we investigated the estimation for the varying coefficient model with correlated errors via B-spline. The B-spline approach, as a global smoothing method, is computationally efficient. Under suitable conditions, the convergence rates of the proposed estimators were obtained. Furthermore, two simulation examples were employed to demonstrate the performance of the proposed approach and the necessity of considering correlated errors.



    加载中


    [1] Z. Cai, J. Fan, Q. Yao, Functional-coefficient regression models for nonlinear time series, J. Am. Stat. Assoc., 95 (2000), 941–956. doi: 10.1080/01621459.2000.10474284. doi: 10.1080/01621459.2000.10474284
    [2] W. Härdle, H. Liang, J. Gao, Partially linear models, Heidelberg: Physica-Verlag, 2000. doi: 10.1007/978-3-642-57700-0.
    [3] R. S. Tsay, R. Chen, Nonlinear time series analysis, Hoboken: John Wiley & Sons, 2018. doi: 10.1002/9781119514312.
    [4] C. J. Stone, Additive regression and other nonparametric models, Ann. Stat., 13 (1985), 689–705. doi: 10.1214/aos/1176349548. doi: 10.1214/aos/1176349548
    [5] J. Gao, Nonlinear time series: Semiparametric and nonparametric methods, London: Chapman & Hall, 2007. doi: 10.1201/9781420011210.
    [6] T. Hastie, R. Tibshirani, Varying-coefficient models, J. R. Stat. Soc. B, 55 (1993), 757–779. doi: 10.1111/j.2517-6161.1993.tb01939.x. doi: 10.1111/j.2517-6161.1993.tb01939.x
    [7] R. Chen, R. S. Tsay, Functional-coefficient autoregressive models, J. Am. Stat. Assoc., 88 (1993), 298–308. doi: 10.1080/01621459.1993.10594322. doi: 10.1080/01621459.1993.10594322
    [8] X. Wu, Z. Tian, H. Wang, Polynomial spline estimation for nonparametric (auto-) regressive models, Stud. Sci. Math. Hung., 46 (2009), 515–538. doi: 10.1556/sscmath.2009.1105. doi: 10.1556/sscmath.2009.1105
    [9] L. Xue, H. Liang, Polynomial spline estimation for a generalized additive coefficient model, Scand. J. Stat., 37 (2010), 26–46. doi: 10.1111/j.1467-9469.2009.00655.x. doi: 10.1111/j.1467-9469.2009.00655.x
    [10] Y. Lu, R. Zhang, L. Zhu, Penalized spline estimation for varying-coefficient models, Commun. Stat. Theor. M., 37 (2008), 2249–2261. doi: 10.1080/03610920801931887. doi: 10.1080/03610920801931887
    [11] S. Ma, L. Yang, Spline-backfitted kernel smoothing of partially linear additive model, J. Stat. Plan. Infer., 141 (2011), 204–219. doi: 10.1016/j.jspi.2010.05.028. doi: 10.1016/j.jspi.2010.05.028
    [12] P. Lai, J. Meng, H. Lian, Polynomial spline approach for variable selection and estimation in varying coefficient models for time series data, Stat. Probabil. Lett., 96 (2015), 21–27. doi: 10.1016/j.spl.2014.09.008. doi: 10.1016/j.spl.2014.09.008
    [13] L. Su, A. Ullah, More efficient estimation in nonparametric regression with nonparametric autocorrelated errors, Economet. Theor., 22 (2006), 98–126. doi: 10.1017/S026646660606004X. doi: 10.1017/S026646660606004X
    [14] Z. Xiao, O. B. Linton, R. J. Carroll, E. Mammen, More efficient local polynomial estimation in nonparametric regression with autocorrelated errors, J. Am. Stat. Assoc., 98 (2003), 980–992. doi: 10.1198/016214503000000936. doi: 10.1198/016214503000000936
    [15] H. Lei, Y. Xia, X. Qin, Estimation of semivarying coefficient time series models with ARMA errors, Ann. Stat., 44 (2016), 1618–1660. doi: 10.1214/15-AOS1430. doi: 10.1214/15-AOS1430
    [16] M. H. Montoril, P. A. Morettin, C. Chiann, Spline estimation of functional coefficient regression models for time series with correlated errors, Stat. Probabil. Lett., 92 (2014), 226–231. doi: 10.1016/j.spl.2014.05.021. doi: 10.1016/j.spl.2014.05.021
    [17] M. H. Montoril, P. A. Morettin, C. Chiann, Wavelet estimation of functional coefficient regression models, Int. J. Wavelets Multi., 16 (2018), 1850004. doi: 10.1142/S0219691318500042. doi: 10.1142/S0219691318500042
    [18] H. Lian, P. Lai, H. Liang, Partially linear structure selection in Cox models with varying coefficients, Biometrics, 69 (2013), 348–357. doi: 10.1111/biom.12024. doi: 10.1111/biom.12024
    [19] C. De Boor, A practical guide to splines, New York: Springer-Verlag, 1978. doi: 10.2307/2006241.
    [20] J. Z. Huang, H. Shen, Functional coefficient regression models for non-linear time series: A polynomial spline approach, Scand. J. Stat., 31 (2004), 515–534. doi: 10.1111/j.1467-9469.2004.00404.x. doi: 10.1111/j.1467-9469.2004.00404.x
    [21] J. Shao, Mathematical statistics, New York: Springer-Verlag, 2003. doi: 10.1007/b97553.
    [22] G. Schwarz, Estimating the dimension of a model, Ann. Stat., 6 (1978), 461–464. doi: 10.1214/aos/1176344136. doi: 10.1214/aos/1176344136
    [23] J. Fan, Q. Yao, Nonlinear time series: Nonparametric and parametric methods, New York: Springer-Verlag, 2003. doi: 10.1007/978-0-387-69395-8.
    [24] P. K. Sen, J. M. Singer, Large sample methods in statistics: An introduction with applications, New York: Chapman & Hall, 1994. doi: 10.1201/9780203711606.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1834) PDF downloads(99) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog