The varying coefficient model assumes that the regression function depends linearly on some regressors, and that the regression coefficients are smooth functions of other predictor variables. It provides an appreciable flexibility in capturing the underlying dynamics in data and avoids the so-called "curse of dimensionality" in analyzing complex and multivariate nonlinear structures. Existing estimation methods usually assume that the errors for the model are independent; however, they may not be satisfied in practice. In this study, we investigated the estimation for the varying coefficient model with correlated errors via B-spline. The B-spline approach, as a global smoothing method, is computationally efficient. Under suitable conditions, the convergence rates of the proposed estimators were obtained. Furthermore, two simulation examples were employed to demonstrate the performance of the proposed approach and the necessity of considering correlated errors.
Citation: Yanping Liu, Juliang Yin. B-spline estimation in varying coefficient models with correlated errors[J]. AIMS Mathematics, 2022, 7(3): 3509-3523. doi: 10.3934/math.2022195
The varying coefficient model assumes that the regression function depends linearly on some regressors, and that the regression coefficients are smooth functions of other predictor variables. It provides an appreciable flexibility in capturing the underlying dynamics in data and avoids the so-called "curse of dimensionality" in analyzing complex and multivariate nonlinear structures. Existing estimation methods usually assume that the errors for the model are independent; however, they may not be satisfied in practice. In this study, we investigated the estimation for the varying coefficient model with correlated errors via B-spline. The B-spline approach, as a global smoothing method, is computationally efficient. Under suitable conditions, the convergence rates of the proposed estimators were obtained. Furthermore, two simulation examples were employed to demonstrate the performance of the proposed approach and the necessity of considering correlated errors.
[1] | Z. Cai, J. Fan, Q. Yao, Functional-coefficient regression models for nonlinear time series, J. Am. Stat. Assoc., 95 (2000), 941–956. doi: 10.1080/01621459.2000.10474284. doi: 10.1080/01621459.2000.10474284 |
[2] | W. Härdle, H. Liang, J. Gao, Partially linear models, Heidelberg: Physica-Verlag, 2000. doi: 10.1007/978-3-642-57700-0. |
[3] | R. S. Tsay, R. Chen, Nonlinear time series analysis, Hoboken: John Wiley & Sons, 2018. doi: 10.1002/9781119514312. |
[4] | C. J. Stone, Additive regression and other nonparametric models, Ann. Stat., 13 (1985), 689–705. doi: 10.1214/aos/1176349548. doi: 10.1214/aos/1176349548 |
[5] | J. Gao, Nonlinear time series: Semiparametric and nonparametric methods, London: Chapman & Hall, 2007. doi: 10.1201/9781420011210. |
[6] | T. Hastie, R. Tibshirani, Varying-coefficient models, J. R. Stat. Soc. B, 55 (1993), 757–779. doi: 10.1111/j.2517-6161.1993.tb01939.x. doi: 10.1111/j.2517-6161.1993.tb01939.x |
[7] | R. Chen, R. S. Tsay, Functional-coefficient autoregressive models, J. Am. Stat. Assoc., 88 (1993), 298–308. doi: 10.1080/01621459.1993.10594322. doi: 10.1080/01621459.1993.10594322 |
[8] | X. Wu, Z. Tian, H. Wang, Polynomial spline estimation for nonparametric (auto-) regressive models, Stud. Sci. Math. Hung., 46 (2009), 515–538. doi: 10.1556/sscmath.2009.1105. doi: 10.1556/sscmath.2009.1105 |
[9] | L. Xue, H. Liang, Polynomial spline estimation for a generalized additive coefficient model, Scand. J. Stat., 37 (2010), 26–46. doi: 10.1111/j.1467-9469.2009.00655.x. doi: 10.1111/j.1467-9469.2009.00655.x |
[10] | Y. Lu, R. Zhang, L. Zhu, Penalized spline estimation for varying-coefficient models, Commun. Stat. Theor. M., 37 (2008), 2249–2261. doi: 10.1080/03610920801931887. doi: 10.1080/03610920801931887 |
[11] | S. Ma, L. Yang, Spline-backfitted kernel smoothing of partially linear additive model, J. Stat. Plan. Infer., 141 (2011), 204–219. doi: 10.1016/j.jspi.2010.05.028. doi: 10.1016/j.jspi.2010.05.028 |
[12] | P. Lai, J. Meng, H. Lian, Polynomial spline approach for variable selection and estimation in varying coefficient models for time series data, Stat. Probabil. Lett., 96 (2015), 21–27. doi: 10.1016/j.spl.2014.09.008. doi: 10.1016/j.spl.2014.09.008 |
[13] | L. Su, A. Ullah, More efficient estimation in nonparametric regression with nonparametric autocorrelated errors, Economet. Theor., 22 (2006), 98–126. doi: 10.1017/S026646660606004X. doi: 10.1017/S026646660606004X |
[14] | Z. Xiao, O. B. Linton, R. J. Carroll, E. Mammen, More efficient local polynomial estimation in nonparametric regression with autocorrelated errors, J. Am. Stat. Assoc., 98 (2003), 980–992. doi: 10.1198/016214503000000936. doi: 10.1198/016214503000000936 |
[15] | H. Lei, Y. Xia, X. Qin, Estimation of semivarying coefficient time series models with ARMA errors, Ann. Stat., 44 (2016), 1618–1660. doi: 10.1214/15-AOS1430. doi: 10.1214/15-AOS1430 |
[16] | M. H. Montoril, P. A. Morettin, C. Chiann, Spline estimation of functional coefficient regression models for time series with correlated errors, Stat. Probabil. Lett., 92 (2014), 226–231. doi: 10.1016/j.spl.2014.05.021. doi: 10.1016/j.spl.2014.05.021 |
[17] | M. H. Montoril, P. A. Morettin, C. Chiann, Wavelet estimation of functional coefficient regression models, Int. J. Wavelets Multi., 16 (2018), 1850004. doi: 10.1142/S0219691318500042. doi: 10.1142/S0219691318500042 |
[18] | H. Lian, P. Lai, H. Liang, Partially linear structure selection in Cox models with varying coefficients, Biometrics, 69 (2013), 348–357. doi: 10.1111/biom.12024. doi: 10.1111/biom.12024 |
[19] | C. De Boor, A practical guide to splines, New York: Springer-Verlag, 1978. doi: 10.2307/2006241. |
[20] | J. Z. Huang, H. Shen, Functional coefficient regression models for non-linear time series: A polynomial spline approach, Scand. J. Stat., 31 (2004), 515–534. doi: 10.1111/j.1467-9469.2004.00404.x. doi: 10.1111/j.1467-9469.2004.00404.x |
[21] | J. Shao, Mathematical statistics, New York: Springer-Verlag, 2003. doi: 10.1007/b97553. |
[22] | G. Schwarz, Estimating the dimension of a model, Ann. Stat., 6 (1978), 461–464. doi: 10.1214/aos/1176344136. doi: 10.1214/aos/1176344136 |
[23] | J. Fan, Q. Yao, Nonlinear time series: Nonparametric and parametric methods, New York: Springer-Verlag, 2003. doi: 10.1007/978-0-387-69395-8. |
[24] | P. K. Sen, J. M. Singer, Large sample methods in statistics: An introduction with applications, New York: Chapman & Hall, 1994. doi: 10.1201/9780203711606. |