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Abstract: The varying coefficient model assumes that the regression function depends linearly on
some regressors, and that the regression coefficients are smooth functions of other predictor variables.
It provides an appreciable flexibility in capturing the underlying dynamics in data and avoids the so-
called curse of dimensionality in analyzing complex and multivariate nonlinear structures. Existing
estimation methods usually assume that the errors for the model are independent; however, they may
not be satisfied in practice. In this study, we investigated the estimation for the varying coefficient
model with correlated errors via B-spline. The B-spline approach, as a global smoothing method, is
computationally efficient. Under suitable conditions, the convergence rates of the proposed estimators
were obtained. Furthermore, two simulation examples were employed to demonstrate the performance
of the proposed approach and the necessity of considering correlated errors.
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1. Introduction

Nonlinear phenomena, namely nonnormality, asymmetric cycles, and nonlinear relationships
between lagged variables, have been well observed in some classical data sets, such as the sunspot,
Canadian lynx, and Australian blowfly data. However, linear ARMA models can not adequately
approximate these nonlinear phenomena [1]. Due to this, nonparametric regression models have
found important applications in modeling nonlinear time series [2, 3]. Yet, in the multivariate setting
with more than two variables, it is difficult to estimate regression function with reasonable accuracy
due to the “curse of dimensionality”. To solve this problem, various semiparametric models have been
studied. For example, Stone [4] proposed the additive model, and Gao [5] investigated a class of
partially linear models. In addition, one of the most popular semiparametric models is the varying
coefficient model [6], whose regression function depends linearly on some regressors and regression
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coefficients vary with some threshold variables.
In this study, we consider the varying coefficient model of the following form:

Yt = X>t β(Ut) + εt (1.1)

where Xt = (Xt1, · · · , Xtp)> and β(Ut) = (β1(Ut) · · · , βp(Ut))>. The functions β j(·), j = 1, · · · , p are
assumed to be unknown but smooth. > denotes the transpose of a vector or matrix. Ut is a univariate
random variable, which is called the threshold variable. Both Xt and Ut can consist of either
exogenous variables or lagged variables of Yt. εt is the error term that satisfies E(εt|Xt,Ut) = 0, and
ε = (ε1, . . . , εn)>. As a generalization of the linear model, the Model (1.1) has attracted a great deal of
attention over the past two decades. When Xt and Ut are some lagged variables of Yt, Chen and
Tsay [7] proposed an arranged local regression procedure for the specification of the Model (1.1), and
the consistency result and a recursive algorithm were given. Cai et al. [1] applied a local linear
technique to estimate the time-varying coefficients. The asymptotic properties of the kernel estimators
were investigated under the α−mixing condition. Nevertheless, as pointed out in [8, 9], the local
smoothing method is computationally expensive because it requires re-fitting at every point where the
fitted function needs to be evaluated. In contrast, the advantage of the B-spline estimation method is
its computational efficiency. However, it is difficult to establish the asymptotic normality of the spline
estimators [10, 11]. For varying coefficient models, Lai et al. [12] considered the B-spline to estimate
the time-varying coefficients.

The aforementioned work depends on the assumption of independent errors. However, model
misspecification, such as omitting relevant variables and wrong function form, may result in
correlated errors, as mentioned in [13]. From this perspective, the assumption of independent errors is
inappropriate. Many authors have studied the topic of non-/semi-parametric regression with
correlated errors. Under the assumption that model errors follow an invertible linear process, Xiao
et al. [14] proposed a modification of the local polynomial estimation for nonparametric regression.
Su and Ullah [13] considered nonparametric regression with an error process in a nonparametric
autocorrelated form. Lei et al. [15] investigated a semiparametric autoregressive model with ARMA
errors. In this study, we propose a global smoothing method based on B-spline for the estimation of
the time-varying coefficients. Similar to [16] and [17], we have relaxed the assumption of
independence to model errors, assuming that they can be correlated. That is, when the model errors
are independent, the covariance matrix of the errors is E(εε>) = σ2I. Now, we assume that
E(εε>|Xt,Ut) = V. Specially, if model errors follow an AR(1) process, εt = ρεt−1 + et, |ρ| < 1,
et

i.i.d
∼ (0, σ2),

V =
σ2

1 − ρ2



1 ρ · · · ρn−2 ρn−1

ρ 1 · · · ρn−3 ρn−2

...
...

. . .
...

...

ρn−2 ρn−3 · · · 1 ρ

ρn−1 ρn−2 · · · ρ 1


.

Our study assumes that the covariance matrix of model errors is positive definite, without requiring
a specific form of autoregression, in which case, the scope of application can be further expanded.
Certainly, we extend Theorem 1 of [12] to the case of correlated errors.
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The remainder of this paper has been presented as follows. In Section 2, the estimation procedure
for the varying coefficient model with correlated errors has been introduced. Section 3 presents the
consistency and convergence rates of the spline estimators and provides an estimation algorithm. In
Section 4, we present numerical examples to illustrate the performance of the proposed estimation
method. In Section 5, we compare the results of the proposed spline method with the local linear
method proposed by Cai et al. [1]. The conclusions are presented in Section 6 and the proofs of the
main results in the Appendix.

2. Estimation method

Let a = ξ0 < ξ1 < · · · < ξM+1 = b partition the interval [a, b] into subintervals [ξk, ξk+1), k =

0, ...,M with M internal knots. A polynomial B spline of order r is a function whose restriction to
each subinterval is a polynomial of degree r − 1 and globally r − 2 times continuously differentiable.
A linear space S r,M with a fixed sequence of knots has a normalized B-spline basis {B1(u), · · · , BK(u)}

with K = M + r. As in [18], the basis satisfies (i) Bk(u) ≥ 0, k = 1, · · · ,K, (ii)
K∑

s=1
Bk(u) ≡ 1, and (iii)

B j(u) is supported inside an interval of length r/K, and at most r of the basis functions are nonzero at
any given u.

Suppose that each coefficient function β j(u) in the model (1.1) is smooth; then, it can be well
approximated by a B-spline function β∗j(u) ∈ S r,M [19]. Thus, there is a set of constants

b∗js, s = 1, · · · ,K, such that β j(u) ≈ β∗j(u) =
K∑

s=1
b∗jsBs(u). Different coefficients might be approximated

by B-spline with a different number of knots in principle, but for simplicity, we have assumed the
same basis for the different coefficients. Let b = (b1

>, · · · , bp
>)> = (b11, · · · , b1K , · · · , bp1, · · · , bpK)>,

Zt = (Xt1B1(Ut), · · · , Xt1BK(Ut), · · · , XtpBK(Ut))>, Z = (Z1, · · · , Zn)>, Y = (Y1, · · · ,Yn)>. Let
E(εε>|Xt,Ut) = V, and it is initially known. Subsequently, we can write the criterion as

Q(b) =
1
n

(Y − Zb)>V−1(Y − Zb). (2.1)

Denoting the minimizer by b̂, we estimate β j(u) by β̂ j(u) =
K∑

k=1
b̂ jkBk(u).

3. Asymptotic property

We have imposed the following conditions. (C1) and (C2) are mild regularity conditions. (C3) is
necessary for the identification of the coefficient functions in varying coefficient models, as mentioned
in Huang and Shen [20]. (C4), (C6), and (C7) are the same as those used in [1] for stationary mixing
data. (C5) imposes some smoothness conditions on the coefficient functions.

3.1. Assumptions

(C1) The eigenvalues of V are bounded away from zero and infinity.
(C2) The smoothing variable Ut has a bounded density supported on [a, b].
(C3) The eigenvalues of the matrix E(XtX>t | Ut = u) are uniformly bounded away from zero and

infinity for all u ∈ [a, b].
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(C4) The conditional density of (U1,Ul+1) given (X1,Xl+1) is uniformly bounded on the support of
(X1,Xl+1). The conditional density of U1 given X1 is uniformly bounded on the support of X1.

(C5) For g = β j, 1 ≤ j ≤ p, g satisfies a Lipschitz condition of order d > 1/2 : |g(bdc)(t) − g(bdc)(s)| ≤
C|s − t|d−bdc, where bdc is the biggest integer strictly smaller than d and g(bdc) is the bdc− th
derivative of g. The order of the B-spline used satisfies q ≥ d + 1/2.

(C6) The process {Yt,Xt,Ut}t∈Z is jointly strictly stationary with Ut taking values in R and Xt taking

values in Rp. The α-mixing coefficient α(l) of {Yt,Xt,Zt}t∈Z satisfies
∞∑

l=1
lcα(l)1−2/δ < ∞ for some

δ > 2 and c > 1 − 2/δ.
(C7) E(|Xt j|

2δ) < ∞, j = 1, · · · , d, where δ is given in condition (C6).

3.2. Theoretical result

Theorem 3.1: Assume (C1)−(C7) and that K → ∞,K3/n→ 0, then we have

‖β̂ j − β j‖
2
2 = Op(K/n + 1/K2d), 1 ≤ j ≤ p.

As noted in Lai et al. [12], we know that by choosing K � n1/(2d+1), the well-known optimal
convergence rate Op(n−2d/(2d+1)) is achieved.

If V is unknown and V̂ is an estimator of V, then an application of the substitution principle leads
to

Q(b) =
1
n

(Y − Zb)>V̂−1
(Y − Zb). (3.1)

A two-stage estimator b̄ can be obtained by minimizing (3.1); then, β̄ j(u) =
K∑

k=1
b̄ jkBk(u).

Theorem 3.2: Assume (C1)−(C7), K → ∞,K3/n → 0 and that V̂ is consistent in probability
estimating V, then we have

‖β̄ j − β j‖
2
2 = Op(K/n + 1/K2d), 1 ≤ j ≤ p.

Remark 1. In practice, V is usually unknown. It is customary to replace V in (2.1) with its consistent
estimator V̂ [17, 21]. Then, b̄ can be derived through a two-stage estimation. If the sample size is
sufficiently large, we can split the data set into the training and test parts, and provide a consistent
estimator of V from the residuals of ordinary least squares (OLS) for fitting (1.1) by grouping the
training set.

3.3. Computational aspects

However, the method in Remark 1 is not feasible when the sample size is small. It should be noted
that Montoril et al. [17] have presented an iterative procedure for estimating V, but the iterative
procedure is computationally expensive. Hence, they have provided a more efficient method.
Generally, if the errors of the model follow an autoregressive process, we can estimate the β j(·) by
adopting some ideas of [17]. The estimation algorithm is as follows.
Step 1. Estimate the coefficient vector b by OLS, and denote it by b(0).

AIMS Mathematics Volume 7, Issue 3, 3509–3523.



3513

Step 2. Compute the residuals via ε(0)
t = Yt − Ztb(0), and fit an autoregressive model to the residuals,

i.e.,
ε(0)

t = ϕ(0)
1 ε(0)

t−1 + · · · + ϕ(0)
p ε

(0)
t−p + et.

Step 3. Letting b(0) and (ϕ(0)
1 · · ·ϕ

(0)
p ) in step 1 and step 2 as initial values, estimate b by minimizing

numerically

`(b) =

n∑
t=1

{ϕp(L)(Yt − Ztb)}2,

where ϕp(L) = 1 − ϕ1L − · · · − ϕpLP, with the backshift operator satisfying LkVt = Vt−k, k > 0.

4. Numerical examples

In this section, two simulated examples are considered: the threshold variable Ut is an exogenous
variable and the lagged variable of Yt. For a given data set, we used equally spaced knots. The values
used as candidates for the number of internal knots varied from one to five. The optimal number of
internal knots is selected using the Bayesian information criterion (BIC) (Schwarz [22]). The BIC
criterion function is defined as

BIC = log(RMS) + log(n) ×
p
n
,

where n denotes the sample size, RMS denotes the residual mean square, p is equal to the sum of
number of autoregressive coefficients assumed for the errors and number of B-spline basis. The B-
spline basis {B1(Ut), · · · , BK(Ut)} can be obtained from function bs using the package splines in R
language [3]. We consider time series data with lengths n = 200, 400 and 600, and replicate the
simulation 200 times in each case. For each replication, a total of 1000+n observations were generated,
and only the last n observations were used to ensure approximate stationarity. The performance of
estimators {β̂ j(·)} can be demonstrated by the square root of average squared errors (RASE):

RASE2 =

p∑
k=1

RASE2
j ,

with

RASE j = {n−1
grid

ngrid∑
k=1

[β̂ j(uk) − β j(uk)]2}1/2,

and {uk, k = 1, · · · , ngrid} are grid points on an interval over which the functions are evaluated. Because
the range of the time series data varies from simulation to simulation, we need to select a common
interval to compare the RASE values. The intervals selected for Example 4.1 and Example 4.2
are [−0.45, 0.45] and [−2, 2], respectively.
Example 4.1. Consider the following data generating process

Yt = β1(Ut)Yt−1 + β2(Ut)Yt−2 + εt,

with β1(u) = 0.9 sin(πu) and β2(u) = 0.85 cos(πu). We study two autoregressive errors, i.e. AR(1):
εt = 0.8εt−1 + et and AR(2): εt = 0.5εt−1 + 0.45εt−2 + et, where et

i.i.d
∼ N(0, 0.22) and Ut

i.i.d
∼ U[−0.5, 0.5].
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Example 4.2. We now discuss an exponential autoregressive (EXPAR) model

Yt = β1(Yt−1)Yt−1 + β2(Yt−1)Yt−2 + εt,

with β1(u) = 0.6 + 0.9e(−u2) and β2(u) = −0.4−1.2e(−u2). In this case, the autoregressive errors we study
are AR(1): εt = 0.9εt−1 + et and AR(2): εt = 0.6εt−1 + 0.35εt−2 + et, where et

i.i.d
∼ N(0, 0.22).

5. Numerical results and discussion

In this section, the numerical results for Examples 4.1 and 4.2 are presented. We compare the
performance of local linear (Local) estimators proposed by Cai et al. [1], the spline estimators under
the assumption of independent errors (Spl.ind) and spline estimators (Spl.cor) proposed by us. Tables 1
and 2 show the mean and standard deviation (in parentheses) of the RASEs for β̂1(·) and β̂2(·) with
linear (k = 1) and cubic (k = 3) splines under different AR(p) errors. It is apparent that the standard
deviation of the RASEs in columns Spl.cor decrease with the increase in the sample size n. In addition,
the results of linear splines are similar to those of the cubic splines. Moreover, it can be seen that
the proposed approach performs better than the method that ignores the correlated errors. Based on
cubic splines, Tables 3 and 4 provide the resulting estimates while considering different AR (1) errors:
εt = θεt−1 + et with θ = 0.3, 0.6, 0.9, 0.95 when n = 600. We can see that with the increase in the
correlation levels θ , the performance of Local and Spl.ind worsens, but Spl.cor remains relatively
stable. Furthermore, Spl.cor is always better than Spl.ind and Local, which emphasizes the importance
of considering the correlated errors. The computational times of Example 4.2 are reported in Table 5.
The local linear method is computationally expensive when the sample size is large. Moreover, when
considering the correlated errors, the algorithm needs to search for the optimal solution iteratively.
Therefore, the calculation time of Spl.cor is longer than that of Spl.ind.

Table 1. Simulation results of Example 4.1 for difference sample sizes.

degree AR(p) sample size
Spl.ind Spl.cor

β̂1 β̂2 β̂1 β̂2

n = 200 0.1554(0.0366) 0.1028(0.0297) 0.0694(0.0320) 0.0635(0.0269)
1 n = 400 0.1380(0.0286) 0.0937(0.0239) 0.0667(0.0311) 0.0606(0.0265)

k = 1 n = 600 0.1335(0.0240) 0.0885(0.0193) 0.0606(0.0292) 0.0563(0.0245)
n = 200 0.1484(0.0382) 0.1366(0.0355) 0.0624(0.0315) 0.0633(0.0318)

2 n = 400 0.1340(0.0261) 0.1258(0.0270) 0.0626(0.0313) 0.0630(0.0312)
n = 600 0.1289(0.0224) 0.1236(0.0226) 0.0624(0.0310) 0.0629(0.0309)

n = 200 0.1513(0.0372) 0.1015(0.0296) 0.0664(0.0330) 0.0595(0.0279)
1 n = 400 0.1340(0.0293) 0.0903(0.0249) 0.0592(0.0277) 0.0516(0.0254)

k = 3 n = 600 0.1301(0.0240) 0.0857(0.0211) 0.0530(0.0270) 0.0479(0.0225)
n = 200 0.1448(0.0385) 0.1366(0.0365) 0.0724(0.0342) 0.0718(0.0331)

2 n = 400 0.1309(0.0264) 0.1245(0.0277) 0.0654(0.0321) 0.0638(0.0325)
n = 600 0.1264(0.0229) 0.1217(0.0236) 0.0631(0.0270) 0.0619(0.0282)
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Table 2. Simulation results of Example 4.2 for difference sample sizes.

degree AR(p) sample size
Spl.ind Spl.cor

β̂1 β̂2 β̂1 β̂2

n = 200 0.1452(0.0683) 0.1095(0.0299) 0.0700(0.0307) 0.0658(0.0199)
1 n = 400 0.1049(0.0422) 0.1022(0.0248) 0.0615(0.0239) 0.0634(0.0192)

k = 1 n = 600 0.0894(0.0337) 0.0972(0.0209) 0.0553(0.0208) 0.0599(0.0183)
n = 200 0.2242(0.1250) 0.1307(0.0413) 0.0743(0.0391) 0.0648(0.0227)

2 n = 400 0.1610(0.0807) 0.1305(0.0375) 0.0618(0.0284) 0.0591(0.0180)
n = 600 0.1397(0.0691) 0.1274(0.0330) 0.0608(0.0282) 0.0587(0.0166)

n = 200 0.1420(0.0528) 0.1132(0.0290) 0.0647(0.0252) 0.0503(0.0165)
1 n = 400 0.1108(0.0411) 0.1021(0.0264) 0.0560(0.0220) 0.0431(0.0152)

k = 3 n = 600 0.0883(0.0309) 0.0964(0.0196) 0.0501(0.0198) 0.0371(0.0146)
n = 200 0.2020(0.0988) 0.1349(0.0437) 0.0763(0.0282) 0.0531(0.0196)

2 n = 400 0.1584(0.0660) 0.1347(0.0373) 0.0585(0.0239) 0.0430(0.0147)
n = 600 0.1402(0.0567) 0.1291(0.0311) 0.0538(0.0213) 0.0389(0.0136)

Table 3. Simulation results of Example 4.1 for difference AR(1) error structures.

θ
Local Spl.ind Spl.cor

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

0.3 0.0799(0.0207) 0.0447(0.0156) 0.0760(0.0206) 0.0400(0.0145) 0.0443(0.0155) 0.0400(0.0147)
0.6 0.1221(0.0229) 0.0474(0.0171) 0.1187(0.0226) 0.0566(0.0188) 0.0442(0.0214) 0.0392(0.0178)
0.9 0.1353(0.0226) 0.0752(0.0228) 0.1316(0.0238) 0.1064(0.0220) 0.0641(0.0297) 0.0585(0.0267)

0.95 0.1387(0.0229) 0.0971(0.0314) 0.1317(0.0234) 0.1181(0.0233) 0.0739(0.0306) 0.0681(0.0282)

Table 4. Simulation results of Example 4.2 for difference AR(1) error structures.

θ
Local Spl.ind Spl.cor

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

0.3 0.0679(0.0266) 0.0373(0.0168) 0.0376(0.0148) 0.0309(0.0106) 0.0359(0.0139) 0.0287(0.0104)
0.6 0.0691(0.0281) 0.0469(0.0132) 0.0455(0.0161) 0.0434(0.0129) 0.0393(0.0154) 0.0325(0.0114)
0.9 0.1427(0.0678) 0.0888(0.0207) 0.0883(0.0309) 0.0964(0.0196) 0.0501(0.0198) 0.0371(0.0146)

0.95 0.2008(0.0977) 0.1504(0.0416) 0.1435(0.0510) 0.1508(0.0318) 0.0563(0.0221) 0.0456(0.0153)
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Table 5. Computation time for the spline estimators and the local linear estimators in seconds
based on Example 4.2.

Sample size Spl.ind Spl.cor Local

n = 200 4.4 85.7 57.3
n = 400 5.0 94.5 120.1
n = 600 5.5 102.4 208.6

The estimated β1(·) and β2(·) from a typical sample using cubic splines for Examples 4.1 and 4.2
with AR(1) error structures are plotted in Figures 1 to 4. The solid curve is the true curve, and the
dotted curve represents the typical estimated curve. The typical sample is chosen in such a way that
its RASE value is equal to the median in the 200 simulations [23]. Clearly, the proposed estimators
capture the main features of the true functions well. Although it is not shown here, the examples with
AR(2) error structures show similar results.
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Figure 1. Typical estimated curves of β1 in Example 4.1.
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Figure 2. Typical estimated curves of β2 in Example 4.1.
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Figure 3. Typical estimated curves of β1 in Example 4.2.
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Figure 4. Typical estimated curves of β2 in Example 4.2.

6. Conclusions

This study considered the B-spline estimation for varying coefficient models with correlated errors
using a weighted least squares method. In terms of the theoretical results, convergence rates were
derived under the α-mixing condition. Simulation studies were conducted to illustrate the performance
of the proposed estimation method which showed better performance while considering correlated
errors in fitting varying coefficient models.
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Appendix

A. Proof of the main results

Notation: For two positive sequences an and bn, an . bn means that an/bn is uniformly bounded,
an � bn if an . bn and bn . an. Let ‖g‖2 = {

∫
[a,b]

g2(x)dx}1/2 be the L2-norm of a square integrable
function g(·) on [a, b]. R denotes the set of real numbers, and Z denotes the set of integers. | · | denotes
the Euclidean norm of a vector. I is a identity matrix. e j denotes a unit vector whose j-th entry is 1 and
all other entries of which are 0. We denote by λmin(·) (λmax(·)) the smallest (the largest) eigenvalue of a
matrix. Let C denote a generic constant that might assume different values at different places. Given
random variables Vn, n ≥ 1, let Vn = Op(bn) means that the random variables Vn/bn, n ≥ 1 are bounded
in probability, that is,

lim
M→∞

lim
n→∞

P(| Vn |> Mbn) = 0.

And Vn = op(bn) means that the random variables Vn/bn, n ≥ 1 converge to zero in probability, namely

lim
n→∞

P(| Vn |> εbn) = 0, for ∀ε > 0.

In order to proof the theorems, we need the following Lemmas.
Lemma 1. (Lemma 2, Lai et al. [12]) Under assumptions (C2) and (C3), there are constants 0 <

b1 < b2 < ∞ such that the eigenvalues of EZ1Z>1 fall in [b1
K ,

b2
K ], and under the additional conditions

(C4)−(C7), there are constants 0 < b3 < b4 < ∞ such that the eigenvalues of
n∑

t=1
ZtZ>t /n fall in [b3

K ,
b4
K ]

with probability approaching 1 as n→ ∞.
Lemma 2. Under the conditions (C1)−(C7), we have ε>V−1Z(Z>V−1Z)−1Z>V−1ε = Op(K).

Proof. Note that E(Z>Z) = E(
n∑

t=1
ZtZ>t ) = nE(Z1Z>1 ). Hence, by Lemma 1 we obtain

E(ε>V−1ZZ>V−1ε) = Etr(Z>V−1εε>V−1Z)
= trE(Z>V−1E(εε>|Z)V−1Z)
= trE(Z>V−1Z)
. trE(Z>Z)
. n.

(A.1)

Using the Markov inequality, we can derive

‖ε>V−1Z‖2 = Op(n). (A.2)

On the other hand, by Lemma 1 and (C1),

lim
M→∞

lim
n→∞

P(λmax(Z>V−1Z)−1 < M
K
n

)

= lim
M→∞

lim
n→∞

P(
1

λmin(Z>V−1Z)
< M

K
n

)
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≥ lim
M→∞

lim
n→∞

P(
1

λmin(V−1)λmin(Z>Z)
< M

K
n

)

≥ lim
M→∞

lim
n→∞

P(
1

λmin(Z>Z)
< CM

K
n

)

≥ lim
M→∞

lim
n→∞

P(λmin(
Z>Z

n
) >

C
MK

)

≥ lim
n→∞

P(λmin(
Z>Z

n
) >

b3

K
)

= 1.

Consequently,

λmax(Z>V−1Z)−1 = Op(
K
n

). (A.3)

Then, it follows from (A.2) and (A.3) that

lim
M→∞

lim
n→∞

P(ε>V−1Z(Z>V−1Z)−1Z>V−1ε ≤ KM)

≥ lim
M→∞

lim
n→∞

P(λmax(Z>V−1Z)−1‖ε>V−1Z‖2 ≤ KM)

= lim
M→∞

lim
n→∞

P(λmax(Z>V−1Z)−1‖ε>V−1Z‖2 ≤ KM, ‖ε>V−1Z‖2 ≤
√

Mn)

≥ lim
M→∞

lim
n→∞

P(λmax(Z>V−1Z)−1
√

Mn ≤ KM, ‖ε>V−1Z‖2 ≤
√

Mn)

= lim
M→∞

lim
n→∞

P(λmax(Z>V−1Z)−1 ≤
K
n

√
M, ‖ε>V−1Z‖2 ≤

√
Mn)

= lim
M→∞

lim
n→∞

P(λmax(Z>V−1Z)−1 ≤
K
n

√
M)

= 1.

This completes the proof of Lemma 2. �

Lemma 3. Suppose β0 j(u) =
K∑

k=1
b0 jkBk(u) is the best approximating B-spline for β j(u) with

‖β0 j − β j‖∞ = O(K−d) (such approximation property is well-known for B-spline under smoothness
assumptions (C5), see for example [19]). Let b0 = (b011, · · · , b01K , · · · , b0p1, · · · , b0pK)>,
η = P

V−
1
2 Z

V−
1
2 (Y − Zb0), where P

V−
1
2 Z

= V−
1
2 Z(Z>V−1Z)−1Z>V−

1
2 is a projection matrix. Then under

(C1)−(C7) we have
‖η‖2 = Op(K +

n
K2d ).

Proof. Denote rt =
p∑

j=1
Xt jβ j(Ut) and r = (r1, . . . , rn)>, thus Y = r + ε. We have

‖η‖2 = ‖P
V−

1
2 Z

V−
1
2 (Y − Zb0)‖2

= ‖P
V−

1
2 Z

V−
1
2 ε + P

V−
1
2 Z

V−
1
2 (r − Zb0)‖2

≤ 2‖P
V−

1
2 Z

V−
1
2 ε‖2 + 2‖P

V−
1
2 Z

V−
1
2 (r − Zb0)‖2
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3520

, 2S 1 + 2S 2.

Noting that P
V−

1
2 Z

is an idempotent matrix, by Lemma 2 we obtain that

S 1 = ε>V−
1
2 P

V−
1
2 Z

V−
1
2 ε

= ε>V−1Z(Z>V−1Z)−1Z>V−1ε

= Op(K).

By the approximation property of B-spline we have ‖r − Zb0‖
2 = Op( n

K2d ), hence

lim
M→∞

lim
n→∞

P(‖P
V−

1
2 Z

V−
1
2 (r − Zb0)‖2 ≤ M

n
K2d )

= lim
M→∞

lim
n→∞

P((r − Zb0)>V−
1
2 P

V−
1
2 Z

V−
1
2 (r − Zb0) ≤ M

n
K2d )

≥ lim
M→∞

lim
n→∞

P(λmax(V−
1
2 P

V−
1
2 Z

V−
1
2 )‖r − Zb0‖

2 ≤ M
n

K2d )

≥ lim
M→∞

lim
n→∞

P(‖r − Zb0‖
2 ≤ CM

n
K2d )

= 1.

Thus, S 2 = Op( n
K2d ), the proof is complete.

�

Proof of Theorem 3.1.

Proof. By the definition of b̂, we get

0 ≥ nQ(b̂) − nQ(b0)

= (Y − Zb̂)>V−1(Y − Zb̂) − (Y − Zb0)>V−1(Y − Zb0)

= 2(Y − Zb0)>V−1Z(b0 − b̂) + [Z(b0 − b̂)]>V−1Z(b0 − b̂)

= 2[P
V−

1
2 Z

V−
1
2 (Y − Zb0)]>V−

1
2 Z(b0 − b̂) + ‖V−

1
2 Z(b0 − b̂)‖2.

(A.4)

Applying the Cauchy-Schwartz inequality, the equation (A.4) can be continued as

0 ≥ −4‖P
V−

1
2 Z

V−
1
2 (Y − Zb0)‖2 + ‖V−

1
2 Z(b0 − b̂)‖2.

Hence, by Lemma 3 we obtain

‖V−
1
2 Z(b0 − b̂)‖2 = Op(K +

n
K2d ).

Then, it follows from Lemma 1 and (C1) that

0 = lim
M→∞

lim
n→∞

P(‖V−
1
2 Z(b0 − b̂)‖2 > M(K +

n
K2d ))

≥ lim
M→∞

lim
n→∞

P(λmin(Z>V−1Z)‖b0 − b̂‖2 > M(K +
n

K2d ))
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≥ lim
M→∞

lim
n→∞

P(λmin(V−1)λmin(Z>Z)‖b0 − b̂‖2 > M(K +
n

K2d ))

≥ lim
M→∞

lim
n→∞

P(λmin(
Z>Z

n
)‖b0 − b̂‖2 > CM(

K
n

+
1

K2d ))

= lim
M→∞

lim
n→∞

P(λmin(
Z>Z

n
)‖b0 − b̂‖2 > CM(

K
n

+
1

K2d ), λmin(
Z>Z

n
) >

b3

K
)

≥ lim
M→∞

lim
n→∞

P(‖b0 − b̂‖2 > CM(
K2

n
+

1
K2d−1 )),

which means that ‖b0 − b̂‖2 = Op( K2

n + 1
K2d−1 ). Then, by the property of B-spline (De Boor [19])

b5

K
‖b̂ j − b0 j‖

2 ≤ ‖β̂ j − β0 j‖
2
2 ≤

b6

K
‖b̂ j − b0 j‖

2, (A.5)

for some constants b5, b6 > 0, we can derive

‖β̂ j − β j‖
2
2 .

1
K
‖b̂ j − b0 j‖

2 + ‖β j − β0 j‖
2
∞ = Op(

K
n

+
1

K2d ).

�

Proof of Theorem 3.2.

Proof. The proof of this theorem is similar to that of Theorem 2.2 in [17].
Let R = Z>V−1Z and R̂ = Z>V̂−1Z. Note that V̂ is consistent, then by the Theorem 1.4.2 in [24]

we have
λmax(RR̂−1) ≤ λmax(V−1V̂) = 1 + op(1).

This implies that R̂ is a consistent estimator of R, namely R̂−1R − I = op(1). It follows from (2.1) that

b̂ = (Z>V−1Z)−1Z>V−1Y = R−1Z>V−1Y.

Therefore, by (3.1) we can derive that

b̄ = (Z>V̂−1Z)−1Z>V̂−1Y

= (R̂−1 − R−1)Z>V̂−1Y + R−1Z>V̂−1Y

= (R̂−1R − I)R−1Z>V̂−1Y + R−1Z>(V̂−1V − I)V−1Y + b̂

= (R̂−1R − I)R−1Z>(V̂−1V − I)V−1Y + (R̂−1R − I)R−1Z>V−1Y

+ R−1Z>(V̂−1V − I)V−1Y + b̂

= op(1)b̂ + b̂.

This ensures that
‖b̄ − b̂‖2 = op(1). (A.6)

By (A.5), (A.6) and Theorem 3.1, we conclude that

‖β̄ j − β j‖
2
2 ≤ ‖β̄ j − β̂ j‖

2
2 + ‖β̂ j − β j‖

2
2
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. ‖b̄ − b̂‖2 + ‖β̂ j − β j‖
2
2

= Op(
K
n

+
1

K2d ).

This completes the proof of Theorem 3.2. �
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