Research article Special Issues

Robust estimation for varying-coefficient partially nonlinear model with nonignorable missing response

  • Received: 21 August 2023 Revised: 24 September 2023 Accepted: 15 October 2023 Published: 02 November 2023
  • MSC : 62G10, 62G05

  • In this paper, we studied the robust estimation for the varying-coefficient partially nonlinear model based on modal regression with nonignorable missing response. First, an instrumental variable was used to handle the identifiability issue of parameters in the propensity score function, and a generalized method of moment was combined to obtain the consistent estimators. Second, inverse probability weighting and modal regression were adopted to construct the estimators of parameters and coefficient function in the model. Under some mild conditions, the asymptotic properties of the resulting estimators were established. Furthermore, simulation studies and a real example were carried out to illustrate the effectiveness of our proposed estimation procedures.

    Citation: Yanting Xiao, Yifan Shi. Robust estimation for varying-coefficient partially nonlinear model with nonignorable missing response[J]. AIMS Mathematics, 2023, 8(12): 29849-29871. doi: 10.3934/math.20231526

    Related Papers:

  • In this paper, we studied the robust estimation for the varying-coefficient partially nonlinear model based on modal regression with nonignorable missing response. First, an instrumental variable was used to handle the identifiability issue of parameters in the propensity score function, and a generalized method of moment was combined to obtain the consistent estimators. Second, inverse probability weighting and modal regression were adopted to construct the estimators of parameters and coefficient function in the model. Under some mild conditions, the asymptotic properties of the resulting estimators were established. Furthermore, simulation studies and a real example were carried out to illustrate the effectiveness of our proposed estimation procedures.



    加载中


    [1] R. Li, L. Nie, Efficient statistical inference procedures for partially nonlinear models and their applications, Biometrics, 64 (2008), 904–911. https://doi.org/10.1111/J.1541-0420.2007.00937.X doi: 10.1111/J.1541-0420.2007.00937.X
    [2] N. S. Tang, P. Y. Zhao, Empirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random, Ann. I. Stat. Math., 65 (2013), 639–665. https://doi.org/10.1007/s10463-012-0387-4 doi: 10.1007/s10463-012-0387-4
    [3] T. Z. Li, C. L. Mei, Estimation and inference for varying coefficient partially nonlinear models, J. Stat. Plan Infer., 143 (2013), 2023–2037. https://doi.org/10.1016/j.jspi.2013.05.011 doi: 10.1016/j.jspi.2013.05.011
    [4] X. S. Zhou, P. X. Zhao, X. L. Wang, Empirical likelihood inferences for varying coefficient partially nonlinear models, J. Appl. Stat., 44 (2017), 474–492. https://doi.org/10.1080/02664763.2016.1177496 doi: 10.1080/02664763.2016.1177496
    [5] J. Yang, H. Yang, Smooth-threshold estimating equations for varying coefficient partially nonlinear models based on orthogonality-projection method, J. Comput. Appl. Math., 302 (2016), 24–37. https://doi.org/10.1016/j.cam.2016.01.038 doi: 10.1016/j.cam.2016.01.038
    [6] Y. T. Xiao, Z. S. Chen, Bias-corrected estimations in varying-coefficient partially nonlinear models with measurement error in the nonparametric part, J. Appl. Stat., 45 (2018), 586–603. https://doi.org/10.1080/02664763.2017.1288201 doi: 10.1080/02664763.2017.1288201
    [7] X. R. Tang, P. X. Zhao, Y. P. Yang, W. M. Yang, Adjusted empirical likelihood inferences for varying coefficient partially non linear models with endogenous covariates, Commum. Stat.-Theor. M., 51 (2022), 953–973. https://doi.org/10.1080/03610926.2020.1747078 doi: 10.1080/03610926.2020.1747078
    [8] Y. L. Jiang, Q. H. Ji, B. J. Xie, Robust estimation for the varying coefficient partially nonlinear models, J. Comput. Appl. Math., 326 (2017), 31–43. https://doi.org/10.1016/j.cam.2017.04.028 doi: 10.1016/j.cam.2017.04.028
    [9] J. Yang, F. Lu, H. Yang, Quantile regression for robust inference on varying coefficient partially nonlinear models, J. Korean. Stat. Soc., 47 (2018), 172–184. https://doi.org/10.1016/j.jkss.2017.12.002 doi: 10.1016/j.jkss.2017.12.002
    [10] Y. T. Xiao, L. L. Liang, Robust estimation and variable selection for varying-coefficient partially nonlinear models based on modal regression, J. Korean. Stat. Soc., 51 (2020), 692–715. https://doi.org/10.1007/s42952-021-00158-w doi: 10.1007/s42952-021-00158-w
    [11] R. J. A. Little, D. B. Rubin, Statistical analysis with missing data, New York: Wiley, 2002.
    [12] X. L. Wang, P. X. Zhao, H. Y. Du, Statistical inferences for varying coefficient partially non linear model with missing covariates, Commun. Stat-Theor. M, 50 (2021), 2599–2618. https://doi.org/10.1080/03610926.2019.1674870 doi: 10.1080/03610926.2019.1674870
    [13] L. Q. Xia, X. L. Wang, P. X. Zhao, Y. Q. Song, Empirical likelihood for varying coefficient partially nonlinear model with missing responses, AIMS Math., 6 (2021), 7125–7152. https://doi.org/10.3934/MATH.2021418 doi: 10.3934/MATH.2021418
    [14] J. K. Kim, C. L. Yu, A semiparametric estimation of mean functionals with nonignorable missing data, J. Am. Stat. Assoc., 106 (2011), 157–165. https://doi.org/10.1198/jasa.2011.tm10104 doi: 10.1198/jasa.2011.tm10104
    [15] N. S. Tang, P. Y. Zhao, H. T. Zhu, Empirical likelihood for estimating equations with nonignorably missing data, Stat. Sin., 24 (2014), 723–747. https://doi.org/10.5705/ss.2012.254 doi: 10.5705/ss.2012.254
    [16] S. Wang, J. Shao, J. K. Kim, An instrumental variable approach for identification and estimation with nonignorable nonresponse, Stat. Sin., 24 (2014), 1097–1116. https://dx.doi.org/10.5705/ss.2012.074 doi: 10.5705/ss.2012.074
    [17] J. Shao, L. Wang, Semiparametric inverse propensity weighting for nonignorable missing data, Biometrika, 103 (2016), 175–187. https://doi.org/10.1093/biomet/asv071 doi: 10.1093/biomet/asv071
    [18] W. X. Yao, B. G. Lindsay, R. Z. Li, Local modal regression, J. Nonparametr. Stat., 24 (2012), 647–663. https://doi.org/10.1080/10485252.2012.678848 doi: 10.1080/10485252.2012.678848
    [19] R. Q. Zhang, W. H. Zhao, J. C. Liu, Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression, J. Nonparametr. Stat., 25 (2013), 523–544. https://doi.org/ 10.1080/10485252.2013.772179 doi: 10.1080/10485252.2013.772179
    [20] W. H. Zhao, R. Q. Zhang, J. C. Liu, Y. Z. Lv, Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression, Ann. Inst. Stat. Math., 66 (2014), 165–191. https://doi.org/10.1007/s10463-013-0410-4 doi: 10.1007/s10463-013-0410-4
    [21] L. L. Schumaker, Spline functions: Basic theory, New York: John Wiley and Son, 1981.
    [22] L. Wang, P. Y. Zhao, J. Shao, Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse, Comput. Stat. Data An., 156 (2021), 107142. https://doi.org/10.1016/j.csda.2020.107142 doi: 10.1016/j.csda.2020.107142
    [23] J. Li, S. Ray, B. G. Lindsay, A nonparametric statistical approach to clustering via mode identification, J. Mach. Learn. Res., 8 (2007), 1687–1723.
    [24] S. M. Hammer, D. A. Katzenstein, M. D. Hughes, H. Gundacker, R. T. Schooley, R. H. Haubrich, et al., A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter, N. Engl. J. Med., 335 (1996), 1081–1090. https://doi.org/10.1056/NEJM199610103351501 doi: 10.1056/NEJM199610103351501
    [25] Y. Yuan, G. S. Yin, Bayesian quantile regression for longitudinal studies with nonignorable missing data, Biometrics, 66 (2010), 105–114. https://doi.org/10.1111/j.1541-0420.2009.01269.x doi: 10.1111/j.1541-0420.2009.01269.x
    [26] T. Zhang, L. Wang, Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response, Comput. Stat. Data An., 144 (2020), 106888. https://doi.org/10.1016/j.scda.2019.106888 doi: 10.1016/j.scda.2019.106888
    [27] J. Han, X. H. Liu, X. J. Wei, H. F. Zhang, Adjustable dimension descriptor observer based fault estimation for switched nonlinear systems with partially unknown nonlinear dynamics, Nonlinear. Anal.-Hybri., 42 (2021), 101083. https://doi.org/10.1016/j.nahs.2021.101083 doi: 10.1016/j.nahs.2021.101083
    [28] J. Han, X. H. Liu, X. J. Wei, S. X. Sun, A dynamic proportional-integral observer-based nonlinear fault-tolerant controller design for nonlinear system with partially unknown dynamic, IEEE T. Syst. Man Cy.-S., 52 (2022), 5092–5104. https://doi.org/10.1109/TSMC.2021.3114326 doi: 10.1109/TSMC.2021.3114326
    [29] J. Han, X. H. Liu, X. J. Xie, X. J. Wei, Dynamic output feedback fault tolerant control for switched fuzzy systems with fast time varying and unbounded faults, IEEE. T. Fuzzy Syst., 31 (2023), 3185–3196. https://doi.org/10.1109/TFUZZ.2023.3246061 doi: 10.1109/TFUZZ.2023.3246061
    [30] J. Lv, H. Yang, C. H. Guo, Variable selection in partially linear additive models for modal regression, Commun. Stat.-Simul. C., 46 (2017), 5646–5665. https://doi.org/10.1080/03610918.2016.1171346 doi: 10.1080/03610918.2016.1171346
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1026) PDF downloads(73) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog