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1. Introduction

Varying-coefficient partially linear model, one of the important semiparametric models, has
attracted much attention due to the interpretability of parametric models and the flexibility of
nonparametric models. In this model, we assume that the response and covariates with a parametric
part have a linear relationship. However, this assumption may be inappropriate in some practical
applications. For example, based on the empirical studies in an analysis of a real data set in
ecology [1], it is more reasonable to assume that the relationship between net ecosystem CO2

exchange (NEE) and the amount of photosynthetically active radiation (PAR) is nonlinear. The
scatterplot between viral load and CD4 cell count shows that there is no rigorous linearity between
them [2].

To describe the complicated potential nonlinear relationship between the response and certain
covariates, Li and Mei [3] proposed the varying-coefficient partially nonlinear model, which takes the
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form as
Y = XTα(U) + g(Z,β) + ε, (1.1)

where Y is the response and X ∈ Rp, Z ∈ Rr and U are the associated covariates. g(., .) is a pre-specified
nonlinear function with parameter vector β = (β1, · · · , βq)T . α(.) = (α1(.), · · · , αp(.))T is a coefficient
function and ε is a model error with mean of zero and variance σ2. It is not necessary to demand that
the dimension of Z and β is equal.

It is obvious that model (1.1) is more flexible, which covers a varying-coefficient partially linear
model as a special case, thus, it has been explored by extensive research since it was proposed. Li and
Mei [3] proposed a profile nonlinear least squares estimation procedure and established the
asymptotic properties of the resulting estimators. Zhou et al. [4] investigated the empirical likelihood
inference and showed the corresponding Wilks phenomena. Furthermore, Yang and Yang [5]
developed a two-stage estimation procedure based on the orthogonality-projection method and
smooth-threshold estimating equations. In addition, Xiao and Chen [6] developed a local
bias-corrected empirical likelihood procedure for model (1.1) with measurement errors in the
nonparametric part. Tang et al. [7] proposed an adjusted empirical likelihood statistical inference
procedure for model (1.1) with endogenous covariates.

The common above research is based on either the least squares method or the empirical likelihood
method which are related to mean regression. As we all know, although they have satisfactory
performance in the case of normal distributed data set, it is sensitive and may produce relative large
bias when the data is subject to heavy-tailed distribution or contains outliers. Therefore, some robust
statistical inferences are developed. For model (1.1), Jiang et al. [8] proposed a robust estimation
procedure based on the exponential squared loss function, and Yang et al. [9] developed quantile
regression for robust inference. Recently, Xiao and Liang [10] proposed a robust two-stage estimation
procedure for model (1.1) based on modal regression.

Missing data is frequently encountered in research fields such as biomedicine, economics and
clinical medicine. Common missing mechanism includes missing completely at random (MCAR),
missing at random (MAR) and missing nonignorable at random (MNAR) (Little and Rubin [11]). The
missing probability, which is called the propensity score function, depends only on the exactly
observed variables in the assumption of MAR. At present, some research has explored statistical
inference for model (1.1) under the MAR assumption. For example, with the missing covariates at
random, Wang et al. [12] proposed the profile nonlinear least squares estimation procedure based on
the inverse probability weighted method. Xia et al. [13] developed an empirical likelihood inference
based on the weighted imputation method when the response was missing at random.

Nevertheless, it is possible that the propensity score is related to the value of the unobserved variable
itself. For example, in the surveys about income, individuals with high income are usually less willing
to provide their specific income, and the nonresponse rates tend to be related to the values of response.
In this situation, the NMAR assumption would become reasonable. Compared to the MAR assumption,
it is a great challenge to handle with MNAR since some parameters are not identifiable without any
further restrictions on the propensity score. Over the past few years, MNAR data analysis has received
a lot of attention in the literature. Kim and Yu [14] first defined the exponential tilting model for the
nonignorably missing mechanism and proposed a semiparametric estimation procedure for the mean
functions. Tang et al. [15] developed modified estimating equations by imputing missing data through
a kernel regression method in the exponential tilting model. Wang et al. [16] proposed an instrument
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variable, which is related to the study variable but unrelated to the missing data propensity, to construct
estimating equations. To our knowledge, there is no literature to study the inferences for the varying-
coefficient partially nonlinear model with nonignorable missing response. This motivates us to study
this interesting topic. First, as an extension of the varying-coefficient partially linear model, the model
has the ability of the interpretability of the parametric model and the flexibility of the nonparametric
model. In addition, it can overcome the limitation of linear function in traditional semiparametric
models. Second, compared to MAR, MNAR is much more common in practical applications and more
challenging to study. Furthermore, as one of the robust estimation procedures, modal regression not
only has good performances in the presence of outliers or heavy-tailed distributions, but it also has full
asymptotic efficiency under the normal error distributions.

In this paper, we propose a robust estimation procedure for model (1.1) with nonignorable missing
response. For the nonignorable nonresponse propensity, we assume a semiparametric model because
the fully parametric approach is very sensitive to failure of the assumed parametric models. The
instrument variable not involved in the propensity has been studied by Shao and Wang [17] to avoid
the identifiability issue. The nonparametric component is replaced by a kernel-type estimator, and
then the parameter is estimated by the profiled estimating equations and the generalized method of
moments. We then propose robust estimators in the varying-coefficient partially nonlinear model
based on the inverse probability weighted technique and modal regression. On the one hand,
estimation procedures of using complete-case data may result in serious bias, especially when the
missing probability is large. In consequence, the inverse probability weighted technique provides a
modified way to reduce the estimation bias by using the inverse of the propensity as weights. On the
other hand, modal regression, introduced by Yao et al. [18], has been extensively applied to other
semiparametric models, such as [19, 20]. Modal regression has many advantages over the traditional
mean regression. First, it is easy to implement by involving a tuning parameter that can be
automatically selected. Second, this method has good robustness in the presence of outliers or
heavy-tailed errors, which has been successfully verified by extensive literature. Meanwhile, the
obtained estimator can achieve fully asymptotic efficiency under the normal error distribution in terms
of theoretical properties. This encourages us to adopt inverse probability weighting and modal
regression to the varying-coefficient partially nonlinear model.

The rest of this paper is organized as follows. Section 2 introduces a robust estimation procedure
based on modal regression and inverse probability weighting. Section 3 establishes its theoretical
properties. In Section 4, we discuss the selection of bandwidth and the specific estimation algorithm.
Simulation studies and a real data are then conducted to evaluate the performances of the proposed
estimation procedure in Sections 5 and 6. We make our concluding remarks in Section 7 and leave the
proofs of the main theorems to the Appendix.

2. Estimation methodology

2.1. Modal regression procedure with nonignorable missing response

Suppose that {Yi, Xi, Z i,Ui}
n
i=1 is a random sample from model (1.1); that is,

Yi = XT
i α (Ui) + g (Z i,β) + εi, i = 1, 2 · · · , n, (2.1)
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where covariates Xi, Z i,Ui are completely observed and response Yi has nonignorable missing values.
Let δi be a binary response indicator for Yi, where δi = 1 if Yi is observed, and δi = 0 otherwise.
Furthermore, we define the propensity of missing data as follows

π(Yi,Ti) = Pr(δi = 1|Yi, Xi, Zi,Ui),

where Ti = (XT
i , Z

T
i ,Ui)T . In the MNAR assumption, the propensity of missing data depends on Yi,

regardless of whether Yi is observed or missing.
To simplify model (2.1), we apply B-spline functions to approximate the nonparametric function

α (u) instead of utilizing the local polynomial estimation. This choice is motivated by the fact that
B-spline functions approximation possesses bounded support and numerical stability. In addition, B-
spline functions approximation avoids the issue of high computational complexity associated with local
polynomial estimation, as elaborated in [21]. More specifically, let B(u) = (B1(u), . . . , BL(u))T be the
B-spline basis function with the order of M, where L = K + M and K is the number of interior knots.
Therefore, the nonparametric function αk(u) can be approximated by

αk(u) ≈ BT (u)γk, k = 1, 2, . . . , p, (2.2)

where γk = (γk1, γk2, · · · , γkL)T . Then, we substitute (2.2) into model (2.1) to obtain

Yi ≈WT
i γ + g (Z i,β) + εi, i = 1, 2, · · · , n, (2.3)

where γ = (γT
1 ,γ

T
2 · · · ,γ

T
p )T and Wi = Ip ⊗ B (Ui) · Xi, with Ip being a p-dimensional identity matrix.

For fixed β, model (2.3) can be reexpressed as

Y − g (Z,β) ≈Wγ + ε, (2.4)

where Y = (Y1,Y2, · · · ,Yn)T , g(Z,β) = (g(Z1,β), g(Z2,β), · · · , g(Zn,β))T , W = (W1,W2, · · · ,Wn)T

and ε = (ε1, ε2, · · · , εn)T .
Clearly, model (2.4) is a standard linear model. We can obtain the initial estimators of γ with the

ordinary least squares method as follows

γ̂(1) = (WTW)−1WT (Y − g(Z,β)).

We replace γ in (2.4) by γ̂(1), and model (2.4) becomes

PY ≈ Pg (Z,β) + ε, (2.5)

where P = In −W(WTW)−1WT , with In being an n-dimensional identity matrix.
Then, the inverse probability weighting technique is adopted to reduce the estimation bias when Yi

is missing and modal regression is involved to attained the robust estimators. Motivated by the idea
of Yao et al. [18], the modal estimator for β is constructed by maximizing the following objective
function

Q(β) =

n∑
i=1

∆iφh
[
Pi (Y − g (Z,β))

]
, (2.6)
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where ∆i = δi/π(Yi,Ti), φh(t) = φ(t/h)/h with kernel density function φ(·) and bandwidth h. Pi denotes
the ith row of the matrix P. According to Yao et al. [18], we adopt the Gaussian kernel density function
for φ(·) throughout the paper. The specific selection of h is described in Section 4.1.

However, the propensity score π(Yi,Ti) is usually unknown in practice, and it is common to use the
estimator π̂(Yi,Ti) to replace π(Yi,Ti). The estimation procedure of the propensity π(Yi,Ti) is given in
the next subsection.

2.2. Estimation for semiparametric nonignorable propensity

According to Shao and Wang [17], we assume the following semiparametric model for the
propensity

π(Yi,Ti) = Pr(δi = 1|Yi, Xi, Zi,Ui) =
1

1 + ψ(Ti)q(Yi, ζ)
, (2.7)

where q(Yi, ζ) is a known function of ζ, which is a d-dimensional unknown parameter, and ψ(·) is an
unknown function. Several common models are special cases of the semiparametric model (2.7). For
example, (2.7) reduces to the model for ignorable missing data when q(Yi, ζ) does not depend on Yi.
When q(Yi, ζ) = exp(ζYi), (2.7) simplifies to the exponential tilting model for nonignorable missing
data, as described in Kim and Yu [14].

Without any further assumptions, Shao and Wang [17] showed that ψ(·) and ζ are not identifiable in
propensity score function (2.7). To overcome this difficulty, we assume that Ti can be decomposed as
two parts Ti = (VT

i ,S
T
i )T and Si can be excluded from the propensity model, then (2.7) can be reduced

as

π(Yi,Ti) = π(Yi,Vi) =
1

1 + ψ(Vi)q(Yi, ζ)
, (2.8)

where ψ(·) is an unspecified function of Vi. The covariate Si is referred to the instrument variable by
Wang et al. [16], which aids in identifying and estimating all unknown parameters.

To estimate the propensity defined by (2.8), for any fixed ζ, we have

ψζ(V) =
E{ (1 − δ)|V}
E{δq(Y, ζ)|V}

.

Thus, a nonparametric kernel estimator of ψζ(V) is given by

ψ̂ζ(V) =

n∑
i=1

(1 − δi)Lb(V − Vi)

n∑
i=1
δiq(Yi, ζ)Lb(V − Vi)

, (2.9)

where Lb(·) = b−1L(·/b), L(·) is a kernel function and b is a bandwidth. Note that ψ̂ζ(V) is not an
estimator of ψ(V) as ζ is an unknown parameter value. However, ψ̂ζ(V) is useful in the following
estimating equations for estimating unknown ζ. Define

f (Y,T, δ, ψζ , ζ) =

{
δ

π(Y,T, ψζ , ζ)
− 1

}
h(S) , (2.10)
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where π(Y,T, ψζ , ζ) = {1 + ψ(V)q(Y, ζ)}−1 and h(S) is a known vector-valued function with dimension
R ≥ d +1. As in Wang et al. [16], we recommend to use h(S) = (1,VT ,ST )T throughout this paper. It is
easy to verify that E[ f (Y,T, δ, ψζ0 , ζ0)] = 0 under the true parameter value ζ0. The estimating equations
are over-identifies because of R > d, and we employ the two-step generalized method of moments
(GMM).

Let Fn(ψ̂ζ , ζ) = 1
n

n∑
i=1

f (Yi,Ti, δi, ψ̂ζ , ζ) and ζ̂(1) = arg min
ζ

Fn(ψ̂ζ , ζ)T Fn(ψ̂ζ , ζ). The two-step GMM

estimator of ζ is

ζ̂ = arg min
ζ

Fn(ψ̂ζ , ζ)T Ŵ−1
n Fn(ψ̂ζ , ζ), (2.11)

where Ŵn = 1
n

n∑
i=1

f (Yi,Ti, δi, ψ̂ζ̂(1) , ζ̂(1)) f (Yi,Ti, δi, ψ̂ζ̂(1) , ζ̂(1))T . Eventually, the propensity model can be

consistently estimated by

π̂(Yi,Ti) : π̂(Yi,Ti, ζ̂) =
1

1 + ψ̂ζ̂(Vi)q(Yi, ζ̂)
. (2.12)

Then, the modal estimator β̂ for β is constructed by maximizing the following objective function

Q̂(β) =

n∑
i=1

∆̂iφh
[
Pi (Y − g (Z,β))

]
, (2.13)

where ∆̂i = δi/π̂(Yi,Ti).
Once modal estimator β̂ is obtained, model (2.3) can be transformed to

Y∗i ≈WT
i γ + εi, i = 1, · · · , n, (2.14)

where Y∗i = Yi − g(Zi, β̂).
Similarly, the modal estimators of γ are obtained by maximizing the following objective function

Q̂(γ) =

n∑
i=1

∆̂iφh[(Y∗i −WT
i γ)]. (2.15)

Therefore, we have the estimator of coefficient functions by α̂k(u) = B(u)T γ̂k, k = 1, · · · , p.

3. Theoretical properties

In this section, we discuss the asymptotic properties of the proposed modal regression estimators
for both parametric and nonparametric. Denote the true values of β and αk(·) as β0 and α0k(·) in
model (2.1), respectively. Correspondingly, γ0k is the optimal approximation coefficient of γk in (2.2).
Let F(x, z, u, h) = E(φ′′h (ε)|X = x,Z = z,U = u) and G(x, z, u, h) = E(φ′h(ε)2|X = x,Z = z,U = u).
To facilitate the presentation, we denote by g′(z,β) = ∂g(z,β)/∂β the q × 1 vector of the first order
derivatives of g(z,β) with respect to β.

The required assumption conditions of the main results are derived in the following. These
assumption are common and can be easily satisfied.
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A1: The random variable U has a bounded support U. Its density function f (·) is Lipschitz
continuous, bounded away from 0 to infinite on its support.

A2: All the true coefficient functions α0k(u), k = 1, · · · , p are all rth continuously differentiable on
the interval (0, 1) with r ≥ 2.

A3: For any z, g(z,β) is a continuous function of β, and the 2th derivative of g(z,β) with respect to
β is continuous.

A4: There exists an s > 0 such that E||X||2s < ∞, E||g′(z,β)||2s < ∞.
A5: The bandwidth h satisfies as n→ ∞, nh2r → ∞, nh/ log n→ ∞.
A6: Suppose that ζ0 is the unique solution to E[ f (Y,T, δ, ψζ , ζ)] = 0, Γ = E[∂ f (Y,T, δ, ψζ0 , ζ0)/∂ζ]

is of full rank and D = E[ f (Y,T, δ, ψζ0 , ζ0)⊗2] is positive definite.
A7: Let c1, . . . , cK be the interior knots on [0, 1]. Set c0 = 0, cK+1 = 1 and hi = ci − ci−1. Then,

there exists a constant C0 such that

max{hi}

min{hi}
≤ C0, max{|hi+1 − hi|} = o(K−1).

A8: F(x, z, u, h) and G(x, z, u, h) are continuous with respect to (x, z, u). In addition, F(x, z, u, h) < 0
for any h > 0.

A9: E(φ′h(ε)|x, z, u) = 0 and E(φ′′h (ε)2|x, z, u), E(φ′h(ε)3|x, z, u) and E(φ′′′h (ε)|x, z, u) are continuous
with respect to (x, z, u).

A10: The matrix A and Σ defined in Theorem 1 are positive definite.
These assumptions are commonly adopted in the previous semiparametric model.

Assumptions A1–A4 are generally required in the varying-coefficient partially nonlinear model.
Assumption A5 is common with bandwidth in kernel function. Assumption A6 is necessary for
proving the asymptotic properties of two-step GMM estimator ζ. Assumption A7 indicates that
c1, . . . , cK is a quasi-uniform sequence of partitions on [0, 1]. Assumptions A8 and A9 are commonly
used in the modal regression. Assumption A10 ensures the existence of the asymptotic variance of the
estimator β̂.

The following Theorem 1 gives the asymptotic normality for the parameter estimator β̂.

Theorem 1. Suppose that assumptions A1-A10 hold and the number of interior knots is
K = O(n1/(2r+1)). As n→ ∞, we have

√
n(β̂ − β0)

d
−→ N(0,C−1),

where C = ΣA−1ΣT , Σ = E(F(x, z, u, h)g′(z,β)g′(z,β)T ), A = B + HΠHT ,
B = E[π(Y,T, ζ0)−1G(x, z, u, h)g′(z,β)g′(z,β)T ], Π is the asymptotic variance of ζ̂ defined in remark 1,
H = lim

n→∞
1
n

∑n
i=1 E[π(Y,T, ζ0)−1φ′h(ε)(Pig′(β))T {∂π(Y,T, ζ0)/∂ζ}T ] and Pi is the ith row of

P = In −W(WTW)−1WT , g′(β) = (g′(Z1,β), · · · , g′(Zn,β))T .

Remark 1. As discussed in [22], ζ̂ is a consistent estimator of ζ, and

n1/2(ζ̂ − ζ)
d
→N(0,Π),

where Π = (ΞT D−1Ξ)−1ΞT D−1ΩD−1Ξ(ΞT D−1Ξ)−1, Ξ = E{(1 − δ)[h(S) − ms(V)][η(Y, ζ0) − mη(V)]},
mη(V) = E{δη(Y, ζ0)q(Y, ζ0)|V}/E{δq(Y, ζ0)|V}, ms(V) = E{δh(S)q(Y, ζ0)|V}/E{δq(Y, ζ0)|V}, η(Y, ζ0) =
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{q(Y, ζ0)}−1∂q(Y, ζ0)/∂ζ>, Ω is the covariate matrix of Λ = {h(S) − ms(V)} [δ{1 + ψζ0(V)q(Y, ζ0)} − 1] +

M,M = (M1, . . . ,MR)>,Mr = vec(Φr)T`(T,Y, δ), r = 1, . . . ,R, `(T,Y, δ) is an influence function, R is
the dimension of h(S), Φr = E{ψζ0(V)[∇Cr(V) fv(V) + Cr(V)∇ fv(V)]/fv(V)}, Cr(V) = Cov(T,W̃r | V),
∇Cr(V) = ∂Cr(V) /∂V>, ∇ fv(V) = ∂ fv(V)/∂V>, fv(V) is the density of V and W̃r is the rth coordinate
of δq(Y, ζ0)[h(S) − ms(V)].

The following Theorem 2 gives the consistency of estimator α̂k(·), k = 1, · · · , p.

Theorem 2. Suppose that assumptions A1–A10 hold, and the number of interior knots is
K = O(n1/(2r+1)). As n→ ∞, we have

‖α̂k(·) − α0k(·)‖ = Op(n−
r

2r+1 ), k = 1, · · · , p.

4. Bandwidth selection and estimation algorithm

In this section, we discuss the selection of the bandwidth and estimation procedure based on the
modal expectation maximization (MEM) algorithm proposed by Li et al. [23].

4.1. Bandwidth selection

To obtain the modal estimators β̂ and γ̂ of parameters β and γ, it is necessary to select an appropriate
bandwidth h. For simplicity, we assume that the error variable is independent of X, Z and U. According
to the thought of Yao et al. [18], the ratio of the asymptotic variance of our proposed estimator to that
of the least square estimator is given by

R(h1) =
G(h1)

F(h1)2σ2
1

, (4.1)

where σ2
1 = E(ε2), F(h1) = E[φ′′h1

(ε)] and G(h1) = E[φ′h1
(ε)2]. In practice, we do not know the error

distribution, hence, we cannot obtain F(h1) and G(h1). A feasible method is with estimator F(h1) and

G(h1) by F̂(h1) = 1
n

n∑
i=1
φ′′h1

(ε̂1i), and Ĝ(h1) = 1
n

n∑
i=1

[φ′h1
(ε̂1i)]2, respectively.

Then, the estimator for R(h1) is given by

R̂(h1) =
Ĝ(h1)

F̂(h1)2σ̂2
1

, (4.2)

where ε̂1i = ∆̂i Pi[Y − g(Z, β̂int)] and σ̂2
1 = 1

n

n∑
i=1
ε̂2

1i, β̂
int are the pilot estimators.

Similarly, to obtain the modal estimator γ̂, the estimator for the ratio of the asymptotic variance of
our proposed estimator to that of the least square estimator is given by

R̂(h2) =
Ĝ(h2)

F̂(h2)2σ̂2
2

, (4.3)

where F̂(h2) = 1
n

n∑
i=1
φ′′h2

(ε̂2i), Ĝ(h2) = 1
n

n∑
i=1

[φ′h2
(ε̂2i)]2, ε̂2i = ∆̂i(Yi − g(Zi, β̂) − XT

i α̂
int(Ui)) and σ̂2

2 =

1
n

n∑
i=1
ε̂2

2i, β̂ are the modal estimators and α̂int(·) are the pilot estimators.
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Furthermore, we use the grid search method to choose appropriate bandwidth. hopt1 and hopt2 can
be obtained by minimizing (4.2) and (4.3), respectively. The optimal choice of h1 and h2 are

hopt1 = arg min
h1

R̂(h1), hopt2 = arg min
h2

R̂(h2).

Following Yao et al. [18], the possible grid points for bandwidth can be h1 = 0.5σ̂1 × 1.02 j,
h2 = 0.5σ̂2 × 1.02 j, j = 0, 1, · · · , 100.

4.2. The MEM algorithm of parametric components

In this subsection, we adopt the following MEM algorithm by Li et al. [23] to obtain the estimators
of parameters β by maximizing (2.13). Let β(0) be initial estimators of β with m = 0.

Step 1 (E-step): We update π(i|β(m)) by

π( i|β(m)) =
∆̂iφh{Pi[Y − g(Z,β(m))]}

n∑
i=1

∆̂iφh{Pi[Y − g(Z,β(m))]}
, i = 1, 2, · · · , n.

Step 2 (M-step): We update β(m+1) by

β(m+1) = arg max
β

n∑
i=1

π(i|β(m))∆̂i log φh {Pi[Y − g(Z,β)]}

= arg max
β

n∑
i=1

π(i|β(m))∆̂i log φh{Pi[Y − g(Z,β(m)) − g′(Z,β(m))(β − β(m))]}

= (GT DG)−1GT DŶ,

where Ŷ = (Ŷ1, Ŷ2, . . . , Ŷn)T , Ŷi = ∆̂i Pi [Y − g(Z,β(m)) + g′(Z,β(m))β(m)],
G = (∆̂1 P1g′(Z,β(m)), ∆̂2 P2g′(Z,β(m)), · · · , ∆̂n Png′(Z,β(m)))T , D is n × n diagonal matrix with
D = diag (π(1|β(m)), π(2|β(m)), · · · , π(n|β(m))).

Step 3: Let m = m + 1 and iterate the E-step and M-step until the algorithm converges. Denote the
final estimator of β as β̂ .

4.3. The MEM algorithm of nonparametric components

Based on the MEM algorithm, we can obtain the estimators of parameters γ by maximizing (2.15).
Let γ(0) be initial estimators of γ with m = 0.

Step 1 (E-step): We update π(i|γ(m)) by

π( i|γ(m)) =
∆̂iφh[(Y∗i −WT

i γ
(m))]

n∑
i=1

∆̂iφh[(Y∗i −WT
i γ

(m))]
, i = 1, 2, · · · , n.

Step 2(M-step): We update γ(m+1) by

γ(m+1) = arg max
γ

n∑
i=1

π( i|γ(m))∆̂i log φh[(Y∗i −WT
i γ)]
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= (W̃T D̃W̃)−1W̃T D̃Ỹ, (4.4)

where Ỹ = ∆Y∗, W̃ = ∆W, D̃ = diag(π(1|γ(m)), · · · , π(n|γ(m))) and ∆ = diag(∆̂1, · · · , ∆̂n).
Step 3: Let m = m + 1 and iterate the E-step and M-step until the algorithm converges. Denote the

final estimator of γ as γ̂. The corresponding estimator of nonparametric function is
α̂k(u) = B(u)T γ̂k, k = 1, · · · , p.

5. Simulation studies

In this section, we conduct some simulations to evaluate the finite sample performances of the
proposed estimation procedures. We generate the data from the varying-coefficient partially nonlinear
model described as follows:

Y = XTα (U) + g (Z,β) + ε, (5.1)

where the nonlinear function g(Z,β) = exp (Z1β1 + Z2β2) with parameter vector β = (β1, β2)T =

(1, 1.5)T , the coefficient functions α(U) = (α1(U), α2(U))T with α1(U) = sin(2πU) and α2(U) =

3.5{exp[−(4U − 1)2] + exp[−(4U − 3)2] − 1.5}. The variable U is generated from uniform distribution
U(0, 1). The variable X = (X1, X2)T follows (0,Σ) with Σi j = 0.5| i− j| , 1 ≤ i, j ≤ 2 and Z = (Z1,Z2)T

and it is the same generated as X. To illustrate the robustness of the proposed method, the following
three different distribution of model errors are considered: (1) The normal distribution: ε ∼ N(0, 1);
(2) the t distribution: ε ∼ t(3); (3) the mixed normal distribution(MN): ε ∼ 0.9N(0, 12) + 0.1N(0, 92).
The sample sizes n are 200 and 400, separately, and the simulations are based on 500 replications.
Furthermore, we generate δi from the Bernoulli distribution with probability π(Yi,Vi) =

{1 + ψ(Vi) exp{ζYi}}
−1 and consider four choices of the function ψ(·) and parameter ζ:

Case1. ψ (Vi) = exp {−0.1 − 1.5X1i − 1.5Z1i − 1.5Ui} and ζ = 0;
Case2. ψ (Vi) = exp {−0.1 + 0.5X1i + 0.5Z1i + 0.5Ui} and ζ = −0.8;
Case3. ψ (Vi) = exp {−0.1 + 0.5 sin(X1i) + 0.5 sin(Z1i) + 0.5 sin(Ui)} and ζ = −0.8;
Case4. ψ (Vi) = exp

{
0.6 − 0.3 exp(X1i) − 0.3 exp(Z1i) − 0.3 exp(Ui)

}
and ζ = −0.1.

While Case 1 is an ignorable missing mechanism, Cases 2–4 represent three different kinds of
nonignorable missing mechanisms. The coefficients in the aforementioned four probability models
are chosen so that the average proportions of missing data are between 30% and 40%. It can be seen
that Vi = (X1i,Z1i,Ui)T and the instrument variable Si = (X2i,Z2i)T . As in Shao and Wang [17], we
select the Gaussian kernel function L(·) = 1

√
2π

exp(−(·)2/2) to compute the nonparametric kernel
estimator with L (X1i,Z1i,Ui) = L (X1i) L (Z1i) L (Ui), and choose the bandwidth to be b1 = 1.5σ̂X1n

−1/3,
b2 = 1.5σ̂Z1n

−1/3 and b3 = 1.5σ̂Un−1/3, where σ̂X1 , σ̂Z1 , σ̂U is the standard deviation of datasets
{X1i} , {Z1i} , {Ui} , i = 1, 2, · · · n.

To evaluate the efficiencies of the proposed estimation procedure, four estimators of β are
considered as follows:

(i) The proposed modal regression (MR) estimator is based on (2.13), which is denoted as MNAR-
MR.

(ii) The MR estimator is based on (2.13) in which π̂ is estimated with MAR assumption, which is
denoted as MAR-MR.

(iii) The MR estimator is based on complete-case(CC) data, which is denoted as CC-MR.
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(iv) The MR estimator is based on full sample data, which is denoted as FULL-MR.

Further, in order to assess the robustness of the proposed procedure, we also compare the profile
least square (PLS) method in four scenarios: (i) The PLS estimator based on (2.13) which is denoted
as MNAR-PLS, (ii) The PLS estimator based on (2.13) in which π̂ is estimated with MAR assumption,
which is denoted as MAR-PLS, (iii) The PLS estimator based on complete-case data, which is denoted
as CC-PLS and (iv) The PLS estimator based on full sample data, which is denoted as FULL-PLS.
The absolute Bias and standard deviation (SD) with the proposed MR method and the PLS method are
reported in Tables 1–4, respectively.

Table 1. Bias and SD of four estimators under proposed MR procedure with n = 200.

ε π MNAR-MR MAR-MR CC-MR FULL-MR

β1 β2 β1 β2 β1 β2 β1 β2

N(0, 1) Case1 Bias -0.0041 0.0057 -0.0042 0.0032 -0.0078 -0.0089 -0.0036 0.0002

SD 0.0363 0.0485 0.0742 0.0808 0.0624 0.0710 0.0082 0.0072

Case2 Bias -0.0017 -0.0006 0.0999 0.0114 -0.0038 -0.0015 0.0006 0.0002

SD 0.0316 0.0305 0.0935 0.0861 0.0704 0.0196 0.0103 0.0091

Case3 Bias -0.0007 -0.0008 -0.0190 0.0223 -0.0019 0.0112 -0.0003 0.0001

SD 0.0309 0.0299 0.1962 0.1218 0.0959 0.0933 0.0088 0.0075

Case4 Bias -0.0004 0.0001 0.0275 0.0962 0.0015 -0.0072 -0.0002 0.0001

SD 0.0286 0.0273 0.1339 0.1074 0.0598 0.0752 0.0095 0.0080

t(3) Case1 Bias -0.0019 0.0018 -0.0024 0.0015 -0.0060 0.0038 -0.0003 0.0001

SD 0.0250 0.0245 0.0407 0.0358 0.0383 0.0347 0.0056 0.0057

Case2 Bias 0.0003 -0.0007 0.0176 0.0011 -0.0082 -0.0018 -0.0002 -0.0001

SD 0.0148 0.0129 0.0897 0.0483 0.0406 0.0385 0.0075 0.0067

Case3 Bias 0.0007 -0.0009 0.0149 0.0131 0.0013 -0.0032 0.0003 -0.0003

SD 0.0152 0.0139 0.2315 0.0889 0.0479 0.0662 0.0059 0.0058

Case4 Bias -0.0004 -0.0006 -0.0103 0.0141 0.0048 -0.0031 0.0001 0.0001

SD 0.0122 0.0109 0.2143 0.0966 0.0572 0.0444 0.0063 0.0051

MN Case1 Bias -0.0004 0.0003 -0.0027 -0.0001 -0.0025 -0.0053 -0.0001 -0.0001

SD 0.0263 0.0247 0.0498 0.0489 0.0423 0.0482 0.0052 0.0044

Case2 Bias -0.0016 0.0008 -0.0045 0.0172 -0.0027 -0.0013 -0.0007 0.0004

SD 0.0171 0.0141 0.1186 0.0949 0.0510 0.0479 0.0063 0.0049

Case3 Bias -0.0005 -0.0003 -0.0113 0.0140 -0.0027 -0.0021 -0.0001 -0.0001

SD 0.0160 0.0138 0.0973 0.0682 0.0505 0.0483 0.0065 0.0057

Case4 Bias -0.0001 -0.0005 0.0232 0.0119 -0.0012 -0.0028 -0.0002 -0.0001

SD 0.0170 0.0209 0.1681 0.1512 0.0336 0.0535 0.0055 0.0046
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Table 2. Bias and SD of four estimators under proposed MR procedure with n = 400.
ε π MNAR-MR MAR-MR CC-MR FULL-MR

β1 β2 β1 β2 β1 β2 β1 β2
N(0, 1) Case1 Bias 0.0001 -0.0005 -0.0005 -0.0007 0.0052 -0.0012 -0.0002 0.0001

SD 0.0597 0.0675 0.0544 0.0932 0.0937 0.0932 0.0087 0.0093
Case2 Bias -0.0007 0.0005 0.0418 0.0275 -0.0016 -0.0029 0.0001 0.0003

SD 0.0064 0.0055 0.0875 0.0813 0.1004 0.1084 0.0042 0.0036
Case3 Bias 0.0008 0.0005 0.0660 0.0870 -0.0018 -0.0331 -0.0004 0.0005

SD 0.0094 0.0051 0.0989 0.1022 0.0625 0.0833 0.0039 0.0034
Case4 Bias -0.0013 -0.0064 0.0705 0.0924 0.0108 -0.0093 -0.0002 0.0002

SD 0.0061 0.0085 0.1084 -0.0989 0.0873 0.0607 0.0034 0.0030
t(3) Case1 Bias 0.0004 -0.0003 -0.0013 0.0003 0.0082 -0.0018 0.0001 -0.0001

SD 0.0197 0.0176 0.0173 0.0165 0.0342 0.0331 0.0037 0.0032
Case2 Bias -0.0006 0.0003 0.0106 0.0070 -0.0013 -0.0019 0.0001 -0.0001

SD 0.0073 0.0062 0.0523 0.0759 0.0397 0.0504 0.0035 0.0034
Case3 Bias -0.0001 -0.0002 0.0241 0.0187 -0.0054 -0.0030 -0.0001 -0.0001

SD 0.0079 0.0066 0.0852 0.0708 0.0482 0.0583 0.0034 0.0031
Case4 Bias -0.0006 0.0002 0.0559 0.0106 -0.0056 -0.0048 -0.0001 0.0001

SD 0.0058 0.0052 0.0982 0.0816 0.0611 0.0542 0.0034 0.0031
MN Case1 Bias 0.0001 0.0002 0.0021 -0.0001 -0.0032 -0.0027 0.0003 -0.0003

SD 0.0109 0.0148 0.0207 0.0165 0.0382 0.0434 0.0029 0.0027
Case2 Bias 0.0005 -0.0007 0.0573 -0.0044 -0.0013 -0.0010 0.0001 -0.0002

SD 0.0072 0.0062 0.0896 0.0876 0.0497 0.0480 0.0026 0.0024
Case3 Bias -0.0003 0.0001 0.0146 0.0037 -0.0033 -0.0017 -0.0002 0.0001

SD 0.0043 0.0042 0.0187 0.0230 0.0104 0.0100 0.0027 0.0024
Case4 Bias -0.0001 0.0003 -0.0115 0.0106 0.0081 -0.0019 -0.0001 0.0001

SD 0.0067 0.0062 0.1307 0.1195 0.0599 0.0477 0.0028 0.0026

Table 3. Bias and SD of four estimators under PLS method with n = 200.
ε π MNAR-PLS MAR-PLS CC-PLS FULL-PLS

β1 β2 β1 β2 β1 β2 β1 β2
N(0, 1) Case1 Bias -0.0040 0.0005 -0.0040 -0.0018 -0.006324 0.0026 -0.0003 -0.0001

SD 0.0297 0.0275 0.0404 0.0382 0.0394 0.0317 0.0041 0.0040
Case2 Bias -0.0004 0.0004 -0.0994 0.0112 -0.0004 -0.0015 0.0002 0.0002

SD 0.0096 0.0086 0.0764 0.0846 0.0208 0.0183 0.0039 0.0033
Case3 Bias 0.0006 -0.0006 -0.0134 0.0150 -0.0019 -0.0011 -0.0003 -0.0002

SD 0.0121 0.0111 0.1942 0.1140 0.0180 0.0149 0.0048 0.0042
Case4 Bias 0.0003 -0.0002 0.0116 0.0609 0.0002 -0.0029 0.0002 -0.0002

SD 0.0125 0.0106 0.1236 0.0877 0.0184 0.0153 0.0058 0.0046
t(3) Case1 Bias -0.0021 0.0021 0.0026 -0.0021 -0.0196 -0.0096 0.0008 -0.0004

SD 0.0305 0.0286 0.0899 0.1050 0.1255 0.0581 0.0195 0.0220
Case2 Bias -0.0011 -0.0017 0.0684 0.1159 0.0090 -0.0104 -0.0007 0.0003

SD 0.0444 0.0613 0.1062 0.1131 0.0921 0.0884 0.0158 0.0131
Case3 Bias -0.0085 -0.0017 -0.0207 0.0123 -0.0032 -0.0081 0.0014 -0.0011

SD 0.0408 0.0324 0.2315 0.1011 0.0980 0.0762 0.0111 0.0104
Case4 Bias -0.0086 0.0037 -0.0101 0.0103 -0.0094 -0.0094 0.0004 -0.0005

SD 0.0542 0.0447 0.2347 0.1103 0.0915 0.0967 0.0106 0.0093
MN Case1 Bias 0.0013 -0.0018 -0.0026 0.0005 -0.0092 -0.0118 -0.0006 0.0004

SD 0.0495 0.0397 0.1036 0.0989 0.1090 0.0961 0.0207 0.0181
Case2 Bias 0.0019 -0.0065 -0.0156 0.0174 -0.0039 -0.0070 -0.0014 0.0006

SD 0.0425 0.0381 0.2588 0.1277 0.1122 0.1108 0.0095 0.0077
Case3 Bias 0.0020 -0.0043 0.0595 0.0194 -0.0996 0.0068 -0.0003 -0.0005

SD 0.0591 0.0385 0.1131 0.0959 0.0981 0.1118 0.0114 0.0094
Case4 Bias -0.0010 -0.0055 0.0865 0.0246 -0.0031 0.0108 -0.0008 0.0007

SD 0.0466 0.0547 0.1801 0.1546 0.1091 0.1001 0.0086 0.0075
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Table 4. Bias and SD of four estimators under proposed PLS method with n = 400.
ε π MNAR-PLS MAR-PLS CC-PLS FULL-PLS

β1 β2 β1 β2 β1 β2 β1 β2
N(0, 1) Case1 Bias -0.0005 -0.0001 0.0004 -0.0004 -0.0043 0.0017 -0.0001 -0.0001

SD 0.0151 0.0121 0.0183 0.0162 0.0338 0.0339 0.0024 0.0020
Case2 Bias -0.0001 0.0008 0.0047 0.0024 -0.0017 -0.0006 0.0002 0.0001

SD 0.0063 0.0054 0.0240 0.0220 0.0101 0.0849 0.0023 0.0019
Case3 Bias -0.0003 0.0005 0.0232 0.0054 -0.0014 -0.0086 -0.0001 0.0002

SD 0.0074 0.0059 0.0622 0.0205 0.0127 0.0107 0.0028 0.0023
Case4 Bias -0.0002 0.0001 0.0741 0.0566 0.0003 -0.0016 0.0001 0.0001

SD 0.0055 0.0049 0.0919 0.0821 0.0175 0.0167 0.0023 0.0020
t(3) Case1 Bias 0.0014 0.0043 -0.0030 0.0042 0.0062 -0.0061 -0.0002 -0.0004

SD 0.0239 0.0223 0.0287 0.0287 0.0945 0.0958 0.0116 0.0110
Case2 Bias -0.0016 0.0053 0.0286 0.0302 -0.0061 -0.0287 -0.0001 -0.0002

SD 0.0281 0.0445 0.0944 0.0980 0.0261 0.0850 0.0085 0.0075
Case3 Bias 0.0012 -0.0050 0.0412 0.0310 -0.0071 -0.0041 0.0004 -0.0005

SD 0.0152 0.0140 0.1119 0.0951 0.0944 0.0834 0.0058 0.0052
Case4 Bias -0.0046 -0.0033 0.0780 0.0934 -0.0085 -0.0075 -0.0008 0.0005

SD 0.0188 0.0129 0.1065 0.1088 0.0954 0.0734 0.0055 0.0063
MN Case1 Bias 0.0043 -0.0011 -0.0029 -0.0039 -0.0053 -0.0431 0.0005 -0.0007

SD 0.0399 0.0191 0.0942 0.0890 0.0405 0.0508 0.0099 0.0082
Case2 Bias -0.0024 0.0040 0.0682 0.0098 -0.0042 -0.0041 0.0007 -0.0009

SD 0.0123 -0.0100 0.1341 0.0710 0.0954 0.0995 0.0045 0.0038
Case3 Bias 0.0076 0.0082 -0.0212 0.0437 -0.0258 -0.0097 -0.0006 0.0004

SD 0.0225 0.0216 0.1043 0.0990 0.0949 0.0626 0.0073 0.0074
Case4 Bias -0.0008 -0.0014 -0.0520 0.0494 -0.0075 -0.0068 -0.0002 0.0002

SD 0.0107 0.0543 0.1525 0.1453 0.0955 0.0968 0.0040 0.0036

Simulation results of Tables 1–4 observe the following conclusions: (1) According to Tables 1 and 2,
the proposed MNAR-MR estimation procedure behaves better than the CC-MR and MAR-MR in terms
of giving smaller Bias and SD in most of the considered scenarios, even under ignorable missing
Case 1. The CC-MR method only focuses on the fully observed samples and ignores the information
of the covariates corresponding to missing response, which causes the biased estimators. As expected,
the estimators of MAR-MR perform well under Case 1 when the missing mechanism is ignorable,
while it has large bias under Cases 2–4 with nonignorable missing mechanism. (2) Comparing to
the proposed MR procedure and PLS method, it is clear to see that Bias and SD of the estimators
obtained by the PLS method are smaller than the proposed MR procedure when the error distribution
is normal. However, when the model error yields to t distribution or mixed normal distribution, the
estimators obtained by the proposed MR procedure are more accurate than those obtained by the PLS
method. This indicates that the proposed MR estimation procedure is less sensitive to the heavy-tailed
distribution or distribution of containing outliers. (3) As the sample size increases, there is an evident
tendency that the performances of all estimation procedures are getting better and better in most of the
considered scenarios.

Furthermore, to evaluate the performance of the proposed estimation procedure for nonparametric
functions, we present the estimated curves of α̂1(·) and α̂2(·) with different methods, respectively.
Specifically, Figure 1 shows the estimated curves of α̂1(·) with the proposed MR procedure and the
PLS method when the sample size n is 200 and the missing mechanism is Case 2. Similar to Figure1,
Figure 2 displays the estimated curves of α̂2(·). Meanwhile, we consider the root of average square
error (RASE) value of the estimation results for the nonparametric functions, where

RAS E =

√
1
M

∑2
j=1

∑M
i=1[α̂ j(ui) − α j(ui)]2 and M = 200 and ui takes the equality points on the interval
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(0, 1). Figure 3 shows the boxplots of the RASE for four estimators based on the proposed MR
procedure when the sample size n is 200 and 400 with the model error ε ∼ t(3), respectively.

According to Figures 1–3, a few conclusions can be drawn as follows: (1) It is noted that the curve-
fitting results of MNAR-MR are more effective than MNAR-PLS in that it is much closer to the real
curve, regardless of whether the model error yields to normal distribution or mixed normal distribution.
This indicates that the advantages of modal regression was apparent when data contains outliers. (2) It
can be seen from Figure 3 that the RASE value of MAR-MR is closest to the RASE value of FULL-MR
under Case 1, while it has large bias under the nonignorable missing mechanism. However, the RASE
value of MNAR-MR is closest to the RASE value of FULL-MR with nonignorable missing mechanism
with evidence that the proposed procedure has better performance on the nonparametric part. (3) The
RASE value of four estimators based on the proposed MR procedure decreases with the increasing of
sample size.
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Figure 1. The estimated curves of the nonparametric function α1(·).
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Figure 2. The estimated curves of the nonparametric function α2(·).
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Figure 3. The boxplots of the RASE for the nonparametric functions.

6. A real data analysis

In this section, we illustrate the proposed method using HIV-CD4 data, which is collected on 2139
HIV positive patients enrolled in AIDS Clinical Trials Group Protocol 175 (ACTG 175) (Hammer
et al. [24]). In this data, the patients were randomized into four groups receiving their respective
antiretroviral treatment regimen: (1) Zidovudine or ZDV with 532 subjects, (2) didanosine or ddi with
522 subjects, (3) ZDV + ddi with 524 subjects and (4) ZDV + zalcitabine with 561 subjects. Let
response Y be the CD4 count at 96±5 weeks under each antiretroviral treatment regimen. There are
six continuous baseline covariates: Age (U), weight (Z1), CD4 cell counts at baseline and 20±5 weeks
(Z2 and Z3) and CD8 cell counts at baseline and 20±5 weeks (Z4 and Z5). Due to adverse events,
death, dropout and some other reasons, Y has missing values, but the values of covariates are fully
observed. Specifically, the proportions of missing data under Y in four regimens are about 39.66%,
36.21%, 35.69% and 37.43%, respectively.

Typically, a sharp decline in CD4 cell count is indicative of disease progression, and patients with
low CD4 cell count are more likely to drop out from the scheduled study visits compared to patients
with normal CD4 (Yuan and Yin [25]). Therefore, the missing values of the CD4 count Y at 96±5
weeks is likely related to the CD4 value count itself, and Y has nonignorable missing values. Following
Zhang and Wang [26], given the six baseline covariates and CD4 count at 96±5 weeks, the missing
data propensity does not depend on age and weight. That is, to apply the proposed method, we use the
age and weight as the instrument variable S.

The scatterplot in Figure 4 indicates that there is no obvious linear relationship between Y and the
covariates. According to [24], it is generally believed that the influence of CD4 cell counts and CD8
cell counts on Y may not be immediate. There is a lagging effect, which is similar to the impact of
acceleration on displacement. Based on the above discussions, we establish the following varying-
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coefficient partially nonlinear model:

Y = α(U) + exp(Z1β1 + Z2β2 + Z3β3 + Z4β4 + Z5β5) + ε. (6.1)
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Figure 4. The scatterplot of CD4 count at 96±5 weeks with baseline covariates.

The estimators of parameter based on the MNAR-MR procedure and fitting curves for the
nonparametric function are given in Table 5 and Figure 5 (From left to right, top to bottom, they are
regimen (1) to regimen (4)).

Table 5. The MNAR-MR estimators for HIV-CD4 data.
β1 β2 β3 β4 β5

Regimen(1)
Estimator 0.025479 0.122334 0.324853 -0.013147 -0.013933

Regimen(2)
Estimator 0.032869 0.160647 0.255346 0.004643 -0.065893

Regimen(3)
Estimator 0.077097 0.284075 0.465495 0.032198 -0.073453

Regimen(4)
Estimator 0.032597 0.199342 0.417049 -0.011851 -0.037176
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Figure 5. The fitting curves of coefficient function for HIV-CD4 data.

It can be seen that: (1) For all the regimens, the estimated coefficients of Z4 and Z5 are close to
zero, while the estimated coefficients of Z2 and Z3 are relatively large. This may indicate that CD8 cell
counts at baseline and 20±5 weeks have no significant impact on the CD4 count at 96±5 weeks, but
CD4 cell counts at baseline and 20±5 weeks appear to affect the CD4 count at 96±5 weeks. (2) Under
four regimens, the coefficients of Z2 and Z3 under regimen (3) are greater than the other regimens,
which may indicate that regimen (3) gives smaller relative hazard ratios than other regimens. (3) The
estimation curve for the nonparametric function is different under the assumptions of MNAR, MAR
and CC, which suggests that the assumption of a nonignorable missing propensity is reasonable, and
also that the effect of age on the response differs under four scenarios. In the future study, the method of
distributed fault estimation based on the fault estimation observer for multi-agent systems [27, 28, 29]
may be applied to improve the estimation performance.

7. Conclusions

This article studied the statistical inference for the varying-coefficient partially nonlinear model
with a nonignorable missing response. A robust estimation procedure was proposed to estimate the
parametric and nonparametric parts separately based on modal regression. Mainly due to the
identifiability of the nonresponse propensity, we considered a semiparametric propensity model and
applied the GMM approach, making use of an instrument variable to identify unknown parameters in
the propensity. Further, the coefficient function was approximated by the B-spline function to simplify
the model structure, and the inverse probability weighted technique and modal regression were
applied to construct the efficient MNAR-MR estimators. Compared to mean regression, modal
regression is robust against outliers or heavy-tail error distribution, and it performs no worse than the
least-square-based method for normal error distribution. Inverse probability weighted technique can
increase the estimation efficiency by the complete-case-data procedure in which the missing subject is

AIMS Mathematics Volume 8, Issue 12, 29849–29871.
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excluded. Under some mild conditions, the asymptotic properties of the proposed procedure were
established. Some simulation studies and a real example were carried out to demonstrate that the
proposed procedure has good performance in the finite samples. In our assumptions, nonlinear
function g(.) is pre-specified. A more valuable model is that of relaxing g(.), which is unknown. It
would be an interesting topic in the future research.
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Appendix: Proofs of theorems

To facilitate the presentation, we denote by

ηi(β) = δi/π̂(Yi,Ti, ζ̂)φ′h[Pi(Y − g(Z,β))]Pig′(β), (7.1)

then the modal estimator β̂ satisfies
∑n

i=1 ηi(β̂) = 0, which is obtained by maximizing (2.13).

Lemma 1. Suppose Assumptions (A1)–(A10) hold. As n→ ∞, we have

1
√

n

n∑
i=1

ηi(β0)
d
−→ N(0, A).

Proof. Let R j(U) = α j(U) − BT (U)γ0 j, R(U) = (R1(U),R2(U), · · · ,Rp(U))T . Model (2.4) can be
reexpressed as

Y − g(Z,β) = Wγ + XR(U) + ε. (7.2)

For fixed β, model (7.2) becomes

PY = XR(U) + Pg(Z,β) + ε. (7.3)

Notice that

φ′h[Pi(Y − g(Z,β))] = φ′h[XT
i R(Ui) + εi] = φ′h(εi) + φ′′h (εi)XT

i R(Ui) + op(1). (7.4)
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By simple calculation,

1
√

n

n∑
i=1

ηi(β0) =
1
√

n

n∑
i=1

δi

π̂(Yi,Ti, ζ̂)
φ′h[Pi(Y − g(Z,β0))]Pig′(β0)

=
1
√

n

n∑
i=1

δi

π(Yi,Ti, ζ0)
φ′h[Pi(Y − g(Z,β0))]Pig′(β0)

+
1
√

n

n∑
i=1

[ δi

π̂(Yi,Ti, ζ̂)
−

δi

π(Yi,Ti, ζ0)
]
φ′h[Pi(Y − g(Z,β0))]Pig′(β0)

=
1
√

n

n∑
i=1

I1i +
1
√

n

n∑
i=1

I2i. (7.5)

For I1i, by (7.4) and the fact ||R(U) = O(K−r)||, it can be shown that E(I1i) = 0 and Var(I1i) =

E(I2
1i) = E[π(Yi,Ti, ζ0)−1φ′h(εi)2(Pig′(β0))T Pig′(β0)].
Therefore,

1
√

n

n∑
i=1

Ii1
d
−→ N(0, B) (7.6)

is obtained, where B = E[π(Y,T, ζ0)−1G(x, z, u, h)g′(z,β)g′(z,β)T ].
In terms of I2i, noticing that

1
√

n

n∑
i=1

Ii2 =
1
√

n

n∑
i=1

[ δi

π̂(Yi,Ti, ζ̂)
−

δi

π(Yi,Ti, ζ0)
]
φ′h[Pi(Y − g(Z,β0))]Pig′(β0)

=
1
n

n∑
i=1

[∂π(Yi,Ti, ζ0)/∂ζ
π(Yi,Ti, ζ0)2

]
δiφ
′
h[Pi(Y − g(Z,β0))]Pig′(β0)

√
n(ζ̂ − ζ0) + op(n−1/2)(7.7)

it is easy to show that

1
n

n∑
i=1

[∂π(Yi,Ti, ζ0)/∂ζ
π(Yi,Ti, ζ0)2

]
δiφ
′
h[Pi(Y − g(Z,β0))]Pig′(β0)

p
−→ H,

where H is defined in Theorem 1.
According to Wang et al. [22], we have ζ̂ − ζ0 = Op(n−1/2) and n−1/2(ζ̂ − ζ0)

d
−→ N(0,Π). Then, we

have

1
√

n

n∑
i=1

Ii2
d
−→ N(0,HΠHT ). (7.8)

By (7.5), (7.6) and (7.8), the result is proved. �

Lemma 2. Suppose Assumptions (A1)–(A10) hold. As n→ ∞, we have

1
n

n∑
i=1

∂ηi(β0)
∂β

p
−→ Σ.
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Proof.

1
n

n∑
i=1

∂ηi(β0)
∂β

=
1
n

n∑
i=1

∂

∂β

{ δi

π(Yi,Ti, ζ0)
φ′h[Pi(Y − g(Z,β0))]Pig′(β0)

}
+

1
n

n∑
i=1

∂

∂β

{[ δi

π̂(Yi,Ti, ζ̂)
−

δi

π(Yi,Ti, ζ0)
]
φ′h[Pi(Y − g(Z,β0))]Pig′(β0)

}
= T1 + T2 (7.9)

it is easy to obtain E(T1) = E
(
φ′′h (εi)(Pig′(β0))T Pig′(β0)

)
. By the law of large numbers, we have T1

p
−→

Σ, where Σ = E
(
F(x, z, u, h)g′(z,β)g′(z,β)T

)
.

For T2, applying the Taylor expansion, we get

T2 =
1
n

n∑
i=1

[∂π(Yi,Ti, ζ0)/∂ζ
π(Yi,Ti, ζ0)2

] ∂
∂β
{δiφ

′
h[Pi(Y − g(Z,β0))]Pig′(β0)}(ζ̂ − ζ0) + op(1). (7.10)

By the law of large numbers, we have

lim
n→∞

1
n

n∑
i=1

[∂π(Yi,Ti, ζ0)/∂ζ
π(Yi,Ti, ζ0)2

] ∂
∂β
{δiφ

′
h[Pi(Y − g(Z,β0))]Pig′(β0)}

= E
{∂π(Yi,Ti, ζ0)/∂ζ

π(Yi,Ti, ζ0)
∂

∂β

{
φ′h[Pi(Y − g(Z,β0))]Pig′(β0)

}}
. (7.11)

As ζ̂ is the consistent estimator of ζ0, we conclude that T2 = op(1). This yields the result that

1
n

n∑
i=1

∂ηi(β0)
∂β

p
−→ Σ.

�

Proof of Theorem 1. Since the modal estimators β̂ satisfies
∑n

i=1 ηi(β̂) = 0, according to the Taylor
expansion, we have

1
√

n

n∑
i=1

ηi(β̂) =
1
√

n

n∑
i=1

ηi(β0) +
1
n

n∑
i=1

∂ηi(β0)
∂β

√
n(β̂ − β0). (7.12)

From Lemmas 1, 2 and (7.12), we have
√

n(β̂ − β0)
d
−→ N(0,Σ−1AΣ−1). �

Proof of Theorem 2. Let δn = n−r/(2r+1) and v = (vT
1 , · · · , v

T
p )T with PL dimension. Define γ = γ0 +δnv.

We show that, for any given ε > 0, there exists a large enough constant C such that

P
{

inf
||v||=C

Q̂(γ) > Q̂(γ0)
}
≥ 1 − ε, (7.13)

where Q̂(γ) is defined in (2.15). Let ϕ(γ) = Q̂(γ) − Q̂(γ0). By Taylor expansion we have

ϕ(γ) = δn

n∑
i=1

φ′h((εi + XT
i R(Ui) + g′(Zi,β)(β − β̂))∆̂iWT

i v
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+ δ2
n

n∑
i=1

φ′′h ((εi + XT
i R(Ui) + g′(Zi,β)(β − β̂))(∆̂iWT

i v)2

+ δ3
n

n∑
i=1

φ′′′h (ξi)(∆̂iWT
i v)3

, I1 + I2 + I3,

where ξi lies in Y∗i −WT
i γ0 and Y∗i −WT

i γ. Then, for I1, using Taylor expansion, we obtain that

I1 = δn

n∑
i=1

{φ′h(εi) + φ′′h (εi)XT
i R(Ui) + φ′′h (εi)g′(Zi,β)(β − β̂)}∆̂iWT

i v

+ δn

n∑
i=1

{φ′′′h (ζi)[XT
i R(Ui) + g′(Zi,β)(β − β̂)]2}∆̂iWT

i v.,

where ζi lies in εi and εi + XT
i R(Ui) + g′(Zi,β)(β − β̂).

By Assumption (A6), (A8) and some calculation results, we have I1 = Op(nK−rδn ‖v‖) =Op(nδ2
n ‖v‖).

Similarly, we can prove that I2 = Op(nδ2
n‖v‖

2) and I3 = Op(nδ3
n‖v‖

3). Hence, by choosing a
sufficiently large C, I2 dominates I1 uniformly ‖v‖ = C. Since δn → 0, it follows that δn||v|| → 0 with
|v|| = C, which leads to I3 = Op(I2). Hence, (7.13) holds. There exists local maximizers γ̂, and we
have

||γ̂ − γ0|| = Op(δn) = Op(n−
r

2r+1 ). (7.14)

Similar to the proof of Theorem 2.1(b) in [30], we can obtain that

||α̂k(.) − α0k(.)|| = Op(n−
r

2r+1 ), k = 1, · · · , p. (7.15)

This completes the Theorem 2. �
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