Research article

Orthogonality based modal empirical likelihood inferences for partially nonlinear models

  • Received: 22 March 2024 Revised: 08 May 2024 Accepted: 22 May 2024 Published: 29 May 2024
  • MSC : 62G05, 62G20

  • This paper explored the effective empirical likelihood inferences for partially nonlinear models. By combining the modal regression method with orthogonal projection technology, a modal empirical likelihood-based estimation procedure was proposed. The proposed empirical likelihood approach retained Wilk's theorem under mild conditions, and the confidence regions of model coefficients were constructed. Nonparametric and parametric components of the estimators were independent. Simulation results demonstrated that it is more robust and effective than the existing methods.

    Citation: Jieqiong Lu, Peixin Zhao, Xiaoshuang Zhou. Orthogonality based modal empirical likelihood inferences for partially nonlinear models[J]. AIMS Mathematics, 2024, 9(7): 18117-18133. doi: 10.3934/math.2024884

    Related Papers:

  • This paper explored the effective empirical likelihood inferences for partially nonlinear models. By combining the modal regression method with orthogonal projection technology, a modal empirical likelihood-based estimation procedure was proposed. The proposed empirical likelihood approach retained Wilk's theorem under mild conditions, and the confidence regions of model coefficients were constructed. Nonparametric and parametric components of the estimators were independent. Simulation results demonstrated that it is more robust and effective than the existing methods.



    加载中


    [1] R. Li, L. Nie, A new estimation procedure for partially nonlinear model via mixed effects approach, Can. J. Stat., 35 (2007), 399–411. https://doi.org/10.1002/cjs.5550350305 doi: 10.1002/cjs.5550350305
    [2] R. Li, L. Nie, Efficient statistical inference procedures for partially nonlinear models and their applications, Biometrics, 64 (2008), 904–911. https://doi.org/10.1111/j.1541-0420.2007.00937.x doi: 10.1111/j.1541-0420.2007.00937.x
    [3] T. Huang, H. Chen, Estimating the parametric component of nonlinear partial spline model, J. Multivariate Anal., 99 (2008), 1665–1680. https://doi.org/10.1016/j.jmva.2008.01.007 doi: 10.1016/j.jmva.2008.01.007
    [4] L. Song, Y. Zhao, X. Wang, Sieve least squares estimation for partially nonlinear models, Stat. Probabil. Lett., 80 (2010), 1271–1283. https://doi.org/10.1016/j.spl.2010.04.006 doi: 10.1016/j.spl.2010.04.006
    [5] Y. Xiao, Z. Tian, F. Li, Empirical likelihood-based inference for parameter and nonparametric function in partially nonlinear models, J. Korean Stat. Soc., 43 (2014), 367–379. http://dx.doi.org/10.1016/j.jkss.2013.11.002 doi: 10.1016/j.jkss.2013.11.002
    [6] Y. Que, Z. Huang, R. Zhang, Statistical estimation in partially nonlinear models with random effects, Statistical Theory and Related Fields, 1 (2017), 227–233. https://doi.org/10.1080/24754269.2017.1396425 doi: 10.1080/24754269.2017.1396425
    [7] Y. Jiang, G. Tian, Y. Fei, A robust and efficient estimation method for partially nonlinear models via a new MM algorithm, Stat. Papers, 60 (2019), 2063–2085. https://doi.org/10.1007/s00362-017-0909-5 doi: 10.1007/s00362-017-0909-5
    [8] X. Zhou, P. Zhao, Y. Gai, Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses, AStA Adv. Stat. Anal., 106 (2022), 705–722. https://doi.org/10.1007/s10182-022-00441-z doi: 10.1007/s10182-022-00441-z
    [9] W. Yao, L. Li, A new regression model: modal linear regression, Scand. J. Stat., 41 (2014), 656–671. https://doi.org/10.1111/sjos.12054 doi: 10.1111/sjos.12054
    [10] W. Yao, B. Lindsay, R. Li, Local modal regression, J. Nonparametr. Stat., 24 (2012), 647–663. https://doi.org/10.1080/10485252.2012.678848 doi: 10.1080/10485252.2012.678848
    [11] J. Liu, R. Zhang, W. Zhao, Y. Lv, A robust and efficient estimation method for single index models, J. Multivariate Anal., 122 (2013), 226–238. https://doi.org/10.1016/j.jmva.2013.08.007 doi: 10.1016/j.jmva.2013.08.007
    [12] R. Zhang, W. Zhao, J. Liu, Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression, J. Nonparametr. Stat., 25 (2013), 523–544. https://doi.org/10.1080/10485252.2013.772179 doi: 10.1080/10485252.2013.772179
    [13] Y. Xiao, L. Liang, Robust estimation and variable selection for varying-coefficient partially nonlinear models based on modal regression, J. Korean Stat. Soc., 51 (2022), 692–715. https://doi.org/10.1007/s42952-021-00158-w doi: 10.1007/s42952-021-00158-w
    [14] H. Yang, J. Lv, C. Guo, Robust estimation and variable selection for varying-coefficient single-index models based on modal regression, Commun. Stat.-Theor. M., 45 (2016), 4048–4067. https://doi.org/10.1080/03610926.2014.915043 doi: 10.1080/03610926.2014.915043
    [15] Y. Xia, Y. Qu, N. Sun, Variable selection for semiparametric varying coefficient partially linear model based on modal regression with missing data, Commun. Stat.-Theor. M., 48 (2019), 5121–5137. https://doi.org/10.1080/03610926.2018.1508712 doi: 10.1080/03610926.2018.1508712
    [16] X. Sun, K. Wang, S. Li, L. Lin, Modal regression based robust empirical likelihood and variable selection for partial linear models with longitudinal data (Chinese), Scientia Sinica (Mathematica), 52 (2022), 447–466. https://doi.org/10.1360/SSM-2019-0230 doi: 10.1360/SSM-2019-0230
    [17] Y. Zhou, R. Mei, Y. Zhao, Z. Hu, M. Zhao, Orthogonality-based bias-corrected empirical likelihood inference for partial linear varying coefficient EV models with longitudinal data, J. Comput. Appl. Math., 443 (2024), 115751. https://doi.org/10.1016/j.cam.2023.115751 doi: 10.1016/j.cam.2023.115751
    [18] W. Zhao, R. Zhang, J. Liu, Y. Lv, Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression, Ann. Inst. Stat. Math., 66 (2014), 165–191. https://doi.org/10.1007/s10463-013-0410-4 doi: 10.1007/s10463-013-0410-4
    [19] A. Owen, Empirical likelihood ratio confidence regions, Ann. Statist., 18 (1990), 90–120. https://doi.org/10.1214/aos/1176347494 doi: 10.1214/aos/1176347494
    [20] W. Zhao, R. Zhang, Y. Liu, J. Liu, Empirical likelihood based modal regression, Stat. Papers, 56 (2015), 411–530. https://doi.org/10.1007/s00362-014-0588-4 doi: 10.1007/s00362-014-0588-4
    [21] L. Xue, L. Zhu, Empirical likelihood semiparametric regression analysis for longitudinal data, Biometrika, 94 (2007), 921–937. https://doi.org/10.1093/biomet/asm066 doi: 10.1093/biomet/asm066
    [22] T. Li, C. Mei, Estimation and inference for varying coefficient partially nonlinear models, J. Stat. Plan. Infer., 143 (2013), 2023–2037. https://doi.org/10.1016/j.jspi.2013.05.011 doi: 10.1016/j.jspi.2013.05.011
    [23] X. Zhou, P. Zhao, X. Wang, Empirical likelihood inferences for varying coefficient partially nonlinear models, J. Appl. Stat., 44 (2017), 474–492. https://doi.org/10.1080/02664763.2016.1177496 doi: 10.1080/02664763.2016.1177496
    [24] X. Wang, P. Zhao, H. Du, Statistical inferences for varying coefficient partially non linear model with missing covariates, Commun. Stat.-Theor. M., 50 (2021), 2599–2618. https://doi.org/10.1080/03610926.2019.1674870 doi: 10.1080/03610926.2019.1674870
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(540) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog