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1. Introduction

A partially nonlinear model, as a combination of a partially linear model and nonlinear model, takes
the following form:

Y = g(X, β) + α(U) + ε, (1.1)

where X ∈ Rp and U ∈ R are covariates, Y is the corresponding response variable, β = (β1, · · · , βp)T

represents a p-dimensional vector comprising unknown regression parameters, and α(·) denotes the
unspecified smooth function. g(·, ·) is a prespecified function and ε is the model error satisfying
E(ε|X,U) = 0. Here, X and β have the same dimension. It is worth noting that this condition is
not necessary.
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Serving as an extension to both the partially linear model and nonlinear model, model (1.1) has
stronger adaptability owing to its ability of to explore more types of nonlinear relationships in data.
Recently, many researchers have considered the estimation methods for β and α(·) in model (1.1).
For example, Li and Nie [1] developed a simple and effective estimation procedure for β through a
nonlinear mixed-effects model. Li and Nie [2] investigated two kinds of estimation methods including
profile nonlinear least squares technique and linear approximation approach. Huang and Chen [3]
proposed the profile least squares technique, which is based on spline by using graduating functions
to approximate the baseline function. Song, Zhao, and Wang [4] introduced a sieve least squares
approach tailored to a specific baseline function. Xiao, Tian, and Li [5] carried out the empirical
likelihood inferences for model (1.1) and showed its superiority in the establishment of confidence
regions. Recently, Que, Huang, and Zhang [6] discovered a partially nonlinear random effects model
and provided a new estimation process by combination of B-splines and the generalized least squares
approach. Jiang, Tian, and Fei [7] proposed a robust and efficient estimation procedure for model (1.1)
with a new MM algorithm.

However, the above-mentioned works mostly paid attention to methods related to least squares or
likelihood, which may be susceptible to outliers. Additionally, the estimation efficiency cannot be
guaranteed when the model error does not conform to a normal distribution. Due to the prominent
merits of quantile regression, Zhou, Zhao, and Gai [8] examined the structure of confidence intervals
for partially nonlinear quantile regression models in scenarios where responses are missing at random.

Besides these, modal regression proposed by Yao and Li [9] is an alternative powerful way to ensure
the robustness of the estimation procedure through the most likely conditional values. Specifically,
using the linear regression model

Yi = XT
i β + εi, i = 1, · · · n (1.2)

as an example to explain the thought of modal regression, assume that f (y|x) be the conditional density
function of the response variable Y given the covariate X. Yao and Li [9] defined the modulus of f (y|x)
as Mode(Y |X) = arg maxy( f (y|x)), and proposed the modal estimator of the unknown parameter vector
β by maximizing the subsequent objective function.

Qh(β) =
1
n

n∑
i=1

ϕh(Yi − XT
i β), (1.3)

where ϕh(·) = h−1ϕ(·/h) represents a symmetric kernel function with bandwidth h. Recently, the
modal regression method has received increasing interest in applications of several kinds of models.
For example, Yao, Lindsay, and Li [10] explored a local modal estimation method for the general
nonparametric models. Yao and Li [9] investigated the modal regression method for the linear
regression models. Liu et al. [11] studied the statistical inference problem of single index models
using modal estimation methods. Zhang, Zhao, and Liu [12] investigated the statistical inferences for
varying-coefficient partially linear models based on modal regression. At the same time, Xiao and
Liang [13] studied the statistical inferences for varying-coefficient partially nonlinear models based on
modal regression. Yang, Lv, and Guo [14] studied the estimation problem of single-index partially
linear models using modal regression method. More works are listed but not limited to [15–18]. As
explained in these works, the obtained estimators based on modal regression possess not only strong
robustness for outliers or heavy-tail error distributions but also high efficiency when the error does not
conform to a normal distribution.
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As is common knowledge, the empirical likelihood approach, presented by Owen [19], is a very
powerful tool in modern statistics, and it has been proven to work well in various nonparametric and
semiparametric models under the framework of both the mean regression and the quantile regression.
Therefore, the performance of empirical likelihood under modal regression is a worthwhile research
topic. Zhao et al. [20] explored a novel empirical likelihood approach based on modal regression
and illustrated the robustness and high efficiency. To the best of our knowledge, the empirical
likelihood inferences for partially nonlinear models, which are based on modal regression, have not
been researched yet.

Considering the aforementioned issues, as presented in this article, we shall pay attention to
the empirical likelihood-based estimation for model (1.1) within the structure of modal regression.
Employing orthogonal projection technology, we define the auxiliary random vectors for both the
parametric vector β and the nonparametric function α(·) for the construction of the empirical log-
likelihood ratios, and show that our empirical log-likelihood ratios are asymptotically standard chi-
squared distributed. Moreover, simulation studies are performed to test the limited sample performance
of the method that we proposed.

The outline of this paper is arranged as below. In Section 2, we mainly pay attention to the parameter
vector β, and develop the estimation approach and the asymptotic properties of the estimation that we
proposed. In Section 3, we give an account of the estimation result of the nonparametric function α(·).
Simulation results are shown in Section 4. A real data example is presented to illustrate our proposed
method in Section 5. The conditions and the proof of the primary conclusions are revealed in the
Appendix.

2. Empirical likelihood inferences for parametric vector

Let {(Yi, Xi,Ui), i = 1, . . . , n} be a random sample from the partially nonlinear model below:

Yi = g(Xi, β) + α(Ui) + εi, i = 1, . . . , n, (2.1)

where Yi ∈ R, Xi ∈ R
p, and Ui ∈ R are the i-th observed values of the variables Y , X, and U,

respectively. Due to the presence of both the undetermined parametric vector β and the undetermined
nonparametric function α(·), it is complicated to directly derive their estimators because of the different
convergence rates. To solve the problem, we intend to parameterize the nonparametric function at
first and then use B-spline basis functions to deal with the parametrization of α(·). Particularly, let
B(u) = (B1(u), · · · , BL(u))T be the B-spline basis functions, where L = K + M with the order of M and
the number of interior knots K. Thus, α(u) can be approximated as

α(u) ≈ B(u)T t, (2.2)

where t = (t1, · · · , tL)T is the vector composed of basis function coefficients. Denote Zi = B(Ui) =

(B1(Ui), · · · , BL(Ui))T , combining (2.1) and (2.2), we obtain

Yi ≈ g(Xi, β) + ZT
i t + εi, i = 1, . . . , n. (2.3)

Denote g(X, β) = (g(X1, β), · · · , g(Xn, β))T , Z = (Z1, · · · ,Zn)T , ε = (ε1, · · · , εn)T and Y = (Y1, · · · ,Yn)T ,
then the model (2.1) can be rewritten as

Y ≈ g(X, β) + Zt + ε. (2.4)
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Here, Z = Zn×L is presumed to be a matrix of column full rank, and using the QR decomposition
technology, Z can be decomposed into

Z = Q
(
R
0

)
, (2.5)

where Q is an n× n orthogonal matrix, R is an L× L upper triangular matrix, and 0 is a (n− L)× L zero
matrix. Moreover, we divide Q into Q = (Q1,Q2), with the dimensions of Q1 and Q2 being n × L and
n × (n − L), respectively. Since Q is orthogonal, we have QT

2 Q1 = 0. Therefore, QT
2 Z = QT

2 Q1R = 0
holds. By multiplying QT

2 on each side of (2.4), we get

QT
2 Y ≈ QT

2 g(X, β) + QT
2 ε. (2.6)

Write QT
2 Y = (Y∗1 , · · · ,Y

∗
n−L)T , QT

2 g(X, β) = (g(X∗1, β), · · · , g(X∗n−L, β))T and QT
2 ε = (ε∗1, · · · , ε

∗
n−L)T , then

model (2.6) can be expressed as

Y∗i = g(X∗i , β) + ε∗i , i = 1, · · · , n − L. (2.7)

Model (2.7) can be regarded as a nonlinear model. Inspired by the thought of modal regression and
empirical likelihood method, the auxiliary random vector of β can be expressed as

ξi(β) = g′(X∗i , β)ϕ′h(Y∗i − g(X∗i , β)), i = 1, · · · , n − L, (2.8)

where g′(x, β) =
∂g(x,β)
∂β

and ϕ′h(x) is the derivative of the kernel density function ϕh(x). Therefore, the
empirical log-likelihood ratio of β is as below:

R(β) = −2 max

n−L∑
i=1

log((n − L)pi)

∣∣∣∣∣∣∣pi ≥ 0,
n−L∑
i=1

pi = 1,
n−L∑
i=1

piξi(β) = 0

 .
There exists a unique value for R(β) where 0 is inside the convex hull formed by (ξ1(β), · · · , ξn−L(β)).
Using the Lagrange multiplier method, R(β) can be rewritten as

R(β) = 2
n−L∑
i=1

log{1 + λTξi(β)}, (2.9)

where λ is a Lagrange multiplier that is determined by

1
n − L

n−L∑
i=1

ξi(β)
1 + λTξi(β)

= 0. (2.10)

The next Theorem 1 shows that the asymptotic distribution of R(β) is a standard chi-square
distribution, and the detailed proof is included in the Appendix.

Theorem 1. Assume that Conditions C1–C6 given in the Appendix hold. If β is the true value of the
unknown parameter vector, we will have

R(β)
D
−→ χ2

p,

where
D
−→ denotes the convergence in distribution.
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The confidence region of the parameter vector β can be established based on Theorem 1. More
specifically, for a given α (0 < α < 1), cα is a constant that satisfies P(χ2

p ≤ cα) = 1 − α, then
Cα(β) = {β|R(β) ≤ cα} can be seen as an approximate (1 − α) confidence region of β.

Furthermore, maximizing {−R(β)} concerning β yields the maximum empirical likelihood estimator,
denoted as β̂, that is

β̂ = arg max
β

{−R(β)}.

The next Theorem 2 points out that the limit distribution of β̂ is asymptotically normal distributed
under some regular Conditions C1–C6 in the Appendix.

Theorem 2. Assume that Conditions C1–C6 given in the Appendix hold, and the quantity of knots K
satisfies K = O(n

1
2r+1 ), then as n→ ∞, it holds

√
n − L(β̂ − β)

L
−→ N(0,Γ−1ΣΓ−1),

where Γ and Σ can be uncovered in C5 in the Appendix.

3. Empirical likelihood for nonparametric component

Next, we will study the estimation issues for the unknown α(u) in the model (2.1) based on modal
regression. Substitute the unknown β for its maximum empirical likelihood estimator β̂ into the
model (2.1), we get

Ỹi = ZT
i t + εi, i = 1, . . . , n, (3.1)

where Ỹi = Yi−g(Xi, β̂). Model (3.1) can be regarded as a standard linear model, and α(u) in model (2.1)
is linked with t in Eq (2.2). Naturally, we can get the auxiliary random vector for t by

ηi(t) = Ziϕ
′
h(Ỹi − ZT

i t), i = 1, · · · , n. (3.2)

Correspondingly, the empirical log-likelihood ratio for t is

`(t) = −2 max

 n∑
i=1

log(npi)

∣∣∣∣∣∣∣pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piηi(t) = 0

 .
There exists a unique value for `(t) where 0 is inside the convex hull formed by (η1(t), · · · , ηn(t)).
Applying the Lagrange multiplier method, `(t) can be rewritten as

`(t) = 2
n∑

i=1

log{1 + lTηi(t)}, (3.3)

where l is the Lagrange multiplier, it can be ascertained by the equation

1
n

n∑
i=1

ηi(t)
1 + lTηi(t)

= 0. (3.4)

Denote t̂ as the solution of maximizing -`(t), that is

t̂ = arg max
t
{−`(t)},

then the estimator of α(u) can be denoted as α̂(u) = B(u)T t̂.
The following Theorem 3 provides the consistency of the estimator α̂(u) and gives its convergence rate.
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Theorem 3. Assume that Conditions C1–C6 in the Appendix hold, and the quantity of interior knots
K satisfies K = Op(n

1
2r+1 ), then as n→ ∞, it holds

‖α̂(u) − α(u)‖ = Op(n
−r

2r+1 ),

where ‖ · ‖ denotes the L2 norm.

Remark. In addition, in practical applications, the quantity of interior knots K and bandwidth h
should be chosen properly. We present a chosen method that is suggested by [7]. Define F̂(h,K) =
1
n

∑n
i=1 ϕ

′′
h (ε̂i) and Ĝ(h,K) = 1

n

∑n
i=1 ϕ

′
h(ε̂i)2, where ε̂i = Yi − g(Xi, β̂) − α̂(Ui). Then, the estimators of K

and h can be illustrated by

(ĥ, K̂) = arg max
h,K

{
F̂(h,K)2

Ĝ(h,K)

}
. (3.5)

Although the parameters given based on this method may not be optimal in theory, the data
simulation results in Section 4 point out that our approach is feasible.

4. Simulation studies

To illustrate the finite sample performance of the method that we proposed in this paper, many
simulation experiments are conducted in this section. For these simulation experiments, we make use
of the kernel function K(x) = 15

16 (1 − x2)2I(|x| ≤ 1). We need the undersmoothing bandwidth in our
estimation process, and the bandwidth h is selected by the “leave-one-out” cross-validation method.
Using similar arguments to [21], we can confirm that bandwidth satisfies h = O(n−1/5). The data are
produced from the following model:

Yi = exp(XT
i β) + α(Ui) + εi, i = 1, · · · , n, (4.1)

where the parameter β = (β1, β2)T is taken as β = (1, 2)T , and the nonparametric function α(u) =

sin(2πu). The covariates Xi = (X1i, X2i)T and Ui are taken as X1i ∼ N(1, 1), X2i ∼ N(1, 1) and
Ui ∼ U[0, 1], respectively. The response Yi is produced according to the model, and the model error εi

is taken from εi = ε∗i +δiei, where ε∗i ∼ N(0, 0.52), ei ∼ N(0, 1), and δi follows the two-point distribution
with P(δi = 1) = 0.1 and P(δi = 0) = 0.9. Obviously, δi = 1 implies the corresponding Yi is the outlier,
and this can make sure that the generated data contains approximately 10% outliers. In addition, as
shown in the simulations below, we set the sample size that is n = 200, 400, and 600, and for each
situation, the experiment is carried 1000 times individually.

To solve the estimation question of nonlinear and parametric components of the partially nonlinear
model, Li and Nie [2] proposed a profile nonlinear least squares estimation (PLE) technique. There
are two stages for the estimation procedure: at the initial stage, the unknown function is estimated
using the local polynomial method provided that the parameters are known, and in the subsequent
stage, the parameters that are unknown are estimated using the profile nonlinear least squares method.
Next, for this simulation process, we proposed a modal empirical likelihood (MEL) method that will
be contrasted with the profile nonlinear least squares estimation (PLE) method proposed by Li and
Nie [2].

Based on 1000 simulation runs, the box plots present the 1000 absolute deviation values for
parameters β1 and β2 that we can see in Figures 1 and 2, defined by |β̂k − βk|, k = 1, 2. It is obvious that
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Figures 1(a) and 2(a) show the simulation results that are based on the MEL method, and Figures 1(b)
and 2(b) show the simulation results that are based on the PLE method. From Figures 1 and 2, it
is evident that both absolute deviation values, gained by the MEL and PLE methods, decrease with
the increase of the sample size. Also, it can be observed that the MEL method outperforms the PLE
method, because for any given sample size n, the MEL method can give smaller absolute deviation
uniformly. These results indicate that the PLE method is sensitive to outliers, and the proposed MEL
method in this paper can trim off the influence of outliers. Therefore, it is more robust.

Next, the performance of confidence regions for parametric components β = (β1, β2)T is evaluated.
Based on 1000 simulation runs, as shown in Figure 3, the 95% confidence regions of β and the
corresponding coverage probabilities are shown. The dotted curve represents the results based on the
MEL method, and the dashed curve the results based on the PLE method. As shown in Figure 3, the
confidence regions gained by the MEL method based are better than those gained by the PLE method.
This is because the MEL method can provide smaller confidence regions than the PLE method. This is
mainly affected by the disadvantages of the PLE method. The confidence region obtained by the PLE
method needs to estimate the asymptotic variance of β̂, so it will make a difference to the accuracy of
the resulting confidence region. On the contrary, the MEL-based confidence region has nothing to do
with any asymptotic variance estimation and holds a relatively higher accuracy.

Lastly, we evaluate the performance of the confidence intervals for nonparametric function α(u)
gained by MEL and PLE methods individually. When the confidence intervals are constructed for PLE
estimator by using normal approximation, the asymptotic variance of α̂(u) also needs to be estimated.
However, due to the complexity of estimating the asymptotic variance of β̂, it is difficult to obtain a
accurate estimation. Next, we estimate the asymptotic variance in this simulation using the bootstrap
method. Under the situation of n = 400, with the 1000 simulation runs, the average length of 95%
pointwise confidence intervals and the corresponding coverage probabilities for α(u) are computed.
We can see the results that are presented in Figures 4 and 5, individually. The dotted curves give the
results based on the MEL method; at the same time, the dashed curves give the results based on the
PLE method, and the real curve of α(u) is presented by the solid curve.

As shown in Figures 4 and 5, it is noticeable that the MEL method also performs better than the PLE
method for the estimation for the nonparametric function α(u); this is because the associated pointwise
confidence intervals based on the MEL method have shorter average length, and the corresponding
coverage probabilities are a little higher than that gained based on the PLE method. Owing to the
estimation of asymptotic covariance, it is usually used in the normal approximation, and will make an
influence in the accuracy of the PLE method-based confidence intervals. In contrast, the MEL method
does not have to offer a plug-in estimator of the limiting variance. Also, empirical likelihood-based
confidence intervals using modal methods can more accurately capture the true shape of the confidence
intervals. Compared to the PLE method (the two-stage estimation method), it is remarkable that our
proposed MEL method can significantly reduce the computational complexity by using the orthogonal
projection technology.

AIMS Mathematics Volume 9, Issue 7, 18117–18133.



18124

n=200 n=400 n=600

0.
10

0.
12

0.
14

0.
16

0.
18

(a)

n=200 n=400 n=600

0.
10

0.
12

0.
14

0.
16

0.
18

(b)

Figure 1. The boxplots of the 1000 absolute deviation values for the estimator of β1 based
on the MEL method (a) and the PLE method (b).

n=200 n=400 n=600

0.
10

0.
12

0.
14

0.
16

0.
18

(a)

n=200 n=400 n=600

0.
10

0.
12

0.
14

0.
16

0.
18

(b)

Figure 2. The boxplots of the 1000 absolute deviation values for the estimator of β2 based
on the MEL method (a) and the PLE method (b).
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Figure 3. The 95% confidence regions for (β1, β2) (a-c) and the corresponding coverage
probabilities(d) based on MEL and PLE methods.
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Figure 4. The 95% pointwise confidence intervals for α(u) based on MEL and PLE methods.
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Figure 5. The coverage probabilities of 95% pointwise confidence intervals for α(u) based
on MEL and PLE methods.

5. A real data example

In this section, we illustrate the application of the proposed modal empirical likelihood (MEL)
method by analyzing the Boston housing price data, consisting of 506 observations from Boston
Standard Metropolitan Statistical Area in 1970. This data have also been studied in Li and Mei [22],
Zhou, Zhao and Wang [23], and Wang, Zhao and Du [24]. To illustrate the proposed method, we
analyze this data by using the following partially nonlinear model

Y = exp(X1β1 + X2β2) + g(U) + ε, (5.1)

where the response variable Y denotes the median value of owner-occupied homes in 1000, X1 denotes
the index of accessibility to radial highways, X2 denotes the pupil-teacher ratio by town school district,
and U denotes the square root of the proportion of population that is in the lower status.

In the following estimation procedure, the kernel function is taken by K(x) = 15
16 (1 − x2)2I(|x| ≤ 1),

and the bandwidth is taken by (3.5). In addition, for comparison, we also present the estimation
results obtained by the profile nonlinear least squares estimation (PLE) method. The estimator of
(β1, β2)T based on our MEL method is (0.3776, 0.2216)T , and the estimator based on the PLE method
is (0.3694, 0.2141)T , whose signs are consistent with that obtained by our MEL method, but the values
are slightly lower. This potentially indicates that, if we ignore outliers, we would underestimate the
impact of X1 and X2 on the response Y .

The 95% confidence region of (β1, β2)T , obtained by the PLE and MEL methods, are shown in
Figure 6, where the dotted curve represents the results based on the MEL method, and the dashed curve
represents the results based on the PLE method. Figure 6 shows that the MEL method can provide
smaller confidence regions than the PLE method, which also validates the conclusions obtained from
the simulation.
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Figure 6. The estimator and the 95% confidence region of (β1, β2) based on the MEL and
PLE methods.

In addition, the pointwise confidence intervals for the nonparametric component g(u) with nominal
level 95% are shown in Figure 7. It can be seen from Figure 7 that the estimated coefficient functions
for nonparametric component based on MEL and PLE are very similar. However, the interval width
given by the MEL method is slightly shorter than that given by the PLE method, which further confirms
that the proposed MEL method is preferable in real data analysis.
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Figure 7. The estimation curve and the 95% confidence interval of g(u) based on the MEL
and PLE methods.

6. Discussion and conclusions

In this article, we focus on the empirical likelihood inferences for the partially nonlinear models
based on the modal regression approach by means of B-spline basis functions to deal with the
parametrization of the nonparametric function, and the relevant asymptotic properties of the resulting
estimators under some mild conditions are obtained. Meanwhile, the corresponding confidence regions
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of parametric and nonparametric components are constructed. Numerical studies show that our modal
empirical likelihood method has better advantages than the conventional profile nonlinear least squares
method. The main reason is that when there are some large outliers in the data, the modal regression
approach will put more weights on the most likely data around the true value, which leads to a robust
and efficient estimator.

In addition, our proposed method can be attempted to be extended to other semiparametric nonlinear
models, such as varying-coefficient partially nonlinear model, additive partially nonlinear model, and
others. Furthermore, robust estimation for the partially nonlinear models and other semiparametric
nonlinear models under the framework of longitudinal data is an interesting topic, and we will consider
this important topic in our future work.
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Appendix. Proofs of main results

We start by outlining the necessary assumption conditions for deriving the main results. These
conditions are relatively lenient and can be readily met.

C1. The covariate U has a bounded support, and its density function f (·) is Lipschitz continuous
and bounded away from 0 on its support.

C2. The nonparametric function α(·) is r-th continuously differentiable on the interval (0, 1) with
r ≥ 2.

C3. For any x, both g(x, β) and the r-th derivative of g(x, β) concerning β are continuous functions
of β.

C4. Denote d1, · · · , dK be the interior knots in [0, 1]. Let d0 = 1, dK+1 = 1 and ∆i = di − di−1. Then,
there exists a constant C such that

max ∆i

min ∆i
≤ C, max | ∆i+1 − ∆i |= o(K−1).

C5. For any given bandwidth h, the kernel function ϕh(·) satisfies Eϕ′h(ε) = 0, Eϕ′′h (ε) = 0 and
Eϕ′h(ε)2 < ∞.

C6. Write Σ = Eϕ′h(ε∗i )g′(X∗i , β)g′(X∗i , β)T and Γ = Eϕ′′h (ε∗i )g′(X∗i , β)g′(X∗i , β)T , both Σ and Γ are
positive matrices.

Lemma 1. Suppose that ξi, i = 1, · · · , n be the independent random variable series, E(ξi) = 0, E(ξ2
i ) <

∞, then we have

max
1≤k≤n

|

k∑
i=1

ξi |= Op(
√

n log n).

The proof can be referred to [9].
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Lemma 2. Suppose that Conditions C1–C6 hold, we have

1
√

n − L

n−L∑
i=1

ξi(β)
L
−→ N(0,Σ),

where Σ has been defined in Condition C6.

Proof. Let R(Ui) = α(Ui) − B(Ui)T t and R(U) = (R(U1), · · · ,R(Un−L))T , since QT
2 Z = 0, we can get

QT
2 Y = QT

2 g(X, β) + QT
2 Zt0 + QT

2 R(U) + QT
2 ε = QT

2 g(X, β) + QT
2 R(U) + QT

2 ε. (A.1)

Note QT
2 R(U) = (r∗1(U), · · · , r∗n−L(U))T , then invoking (A.1) and the definition of ξi(β), by Taylor

expansion with simple calculations, we can have

1
√

n − L

n−L∑
i=1

ξi(β) =
1

√
n − L

n−L∑
i=1

g′(X∗i , β)ϕ′h(r∗i (U) + ε∗i )

=
1

√
n − L

n−L∑
i=1

g′(X∗i , β)ϕ′h(ε∗i ) +
1

√
n − L

n−L∑
i=1

g′(X∗i , β)ϕ′′h (ε∗i )r∗i (U)

+ Op((n − L)1/2)‖R(U)‖2

≡ Jn1 + Jn2 + Op((n − L)1/2‖R(U)‖2). (A.2)

It is easy to obtain E(Jn1) = 0 and Var(Jn1) = Σ, by means of the central limit theorem, we get

Jn1
L
−→ N(0,Σ). (A.3)

Moreover, by the Conditions C1, C3, and Proposition 6.21 of [8], we obtain ‖R(U)‖ = O(K−r), then
combine Lemma 1 and some simple calculations, we get Jn2 = Op((n − L)−

1
2 )(n − L)

1
2 log(n − L)K−r =

op(1) and Op((n − L)
1
2 ‖R(U)‖2) = op(1). Then, combine (A.2), (A.3), and the Slutsky’s theorem, it

follows that 1
√

n−L

∑n−L
i=1 ξi(β)

L
−→ N(0,Σ).

The proof of Lemma 2 is finished. �

Proof of Theorem 1. With the similar arguments of [16], invoking the definition of ξi(β), we can easily
derive

max
i
‖ξi(β)‖ = op((n − L)1/2), (A.4)

and
‖λ‖ = Op((n − L)−1/2). (A.5)

Furthermore, combining (A.3) with (A.4), the following conclusion can be obtained,

R(β) =

{
1

√
n − L

n−L∑
i=1

ξi(β)
}T

Λ̂−1
{

1
√

n − L

n−L∑
i=1

ξi(β)
}

+ op(1), (A.6)

where Λ̂ = (n − L)−1 ∑n−L
i=1 ξi(β)ξT

i (β), by the law of large numbers, Λ̂
L
−→ Σ holds. By (A.5) and

Lemma 2, the proof of Theorem 1 is completed. �
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Proof of Theorem 2. It is easy to understand that the maximum empirical likelihood estimator β̂ is the
solution of the estimation equation

∑n−L
i=1 ξi(β) = 0. Hence, we get

n−L∑
i=1

ξi(β̂) =

n−L∑
i=1

g′(X∗i , β)ϕ′h(Y∗i − g(X∗i , β̂)) = 0. (A.7)

By means of Taylor expansion, we conclude that

n−L∑
i=1

g′(X∗i , β)ϕ′h(Y∗i − g(X∗i , β̂))T =

n−L∑
i=1

g′(X∗i , β)ϕ′h(ε∗i ) +

n−L∑
i=1

g′(X∗i , β)ϕ′′h (ε∗i )g′(X∗i , β)T (β − β̂)

+

n−L∑
i=1

g′(X∗i , β)ϕ′′h (ε∗i )r∗i (U) + Op(n · n−
2r

2r+1 ). (A.8)

Combine (A.7) and (A.8) , using some simple calculations, we derive

1
n − L

n−L∑
i=1

g′(X∗i , β)g′(X∗i , β)Tϕ′′h (ε∗i )
√

n − L(β − β̂) =
1

√
n − L

n−L∑
i=1

g′(X∗i , β)ϕ′h(ε∗i ) + op(1). (A.9)

Applying the law of large numbers,

1
n − L

n−L∑
i=1

g′(X∗i , β)g′(X∗i , β)Tϕ′′h (ε∗i )
L
−→ Γ. (A.10)

Then, by the proof of Lemma 2, (A.9), and (A.10), applying the Slutsky Lemma , we can conclude that
√

n − L(β̂ − β)
L
−→ N(0,Γ−1ΣΓ−1), which completes the proof of Theorem 2. �

Proof of Theorem 3. By a similar proof of Theorem 2, the maximum empirical likelihood estimator t̂
of t is the solution of the equation

n∑
i=1

ηi(t) =

n∑
i=1

Ziϕ
′
h(Ỹi − ZT

i t) = 0.

Then, it is easy to get that t̂ is also the solution of minimizing the following objective function

Qh(t) =

n∑
i=1

ϕh(Ỹi − ZT
i t). (A.11)

Denote τ = n−
r

2r+1 and t = t0 + τξ, where t0 is the true value of the parameter vector t. We first
demonstrate that for any given ε > 0, there exists a large enough constant C such that

P
{

inf
‖ξ‖=C

Qh(t) > Qh(t0)
}
≥ 1 − ε. (A.12)

Using Taylor expansion, some calculations yield

Qh(t) = Qh(t0 + τξ) = Qh(t0) + τξT Q′h(t0) +
1
2
τ2ξT Q′′h (t0)ξ +

1
2
τ3

(
∂{ξT Q′′h (t̃)ξ}

∂t

)T

ξ, (A.13)

AIMS Mathematics Volume 9, Issue 7, 18117–18133.
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where t̃ is between t0 and t. Moreover, β̂ − β = Op(n−1/2). Combining the proof process of Theorem 2,
we obtain

τξT Q′h(t0) = −2τξT

{ n∑
i=1

Ziϕ
′
h(g(Xi, β) − g(Xi, β̂)) + R(Ui) + εi

}
= Op(n1/2)‖ξ‖. (A.14)

1
2
τ2ξT Q′′h (t0)ξ =

1
2
τ2ξT

{
2

n∑
i=1

ZiZT
i ϕ
′′
h (g(Xi, β) − g(Xi, β̂)) + R(Ui) + εi

}
ξ

= Op(nτ2)ξT E{ϕ′′h (εi)ZiZT
i }ξ + ‖ξ‖2op(nτ2). (A.15)

Note Ω(t) = K−1(Qh(t) − Qh(t0), by the (A.14) and (A.15), we have

Ω(t) = Op(nτ2K−1)ξT E{ϕ′′h (εi)ZiZT
i }ξ + ‖ξ‖Op(n

1
2τK−1) + ‖ξ‖2op(nτ2K−1)

≡ J1 + J2 + J3. (A.16)

Since K = Op(n
1

2r+1 ), we get Op(nτ2K−1) = Op(1), Op(n
1
2τK−1) = op(1) and Op(nτ2K−1) = op(1).

Therefore, for a sufficiently large constant C, J1 dominates J2 uniformly, and J1 dominates J3 uniformly
too. With the help of J1 > 0, (A.12) holds naturally. So there exists a local minimizer t̂ satisfying

‖t̂ − t0‖ = Op(τ) = OP(n−
r

2r+1 ). (A.17)

Then we have
‖α̂(u) − α(u)‖2 = Op(‖t̂ − t0‖

2) + Op(‖R(u)‖2). (A.18)

Op(‖R(u)‖2) = OP(n−
r

2r+1 ) can be proved from ‖R(u)‖ = O(K−r) and K = Op(n
1

2r+1 ). Then, by the
above two formulas, we get ‖α̂(u) − α(u)‖2 = OP(n−

2r
2r+1 ). The proof of Theorem 3 is completed. �
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