Heteroscedasticity diagnostics of error variance is essential before performing some statistical inference work. This paper is concerned with the statistical diagnostics for the varying coefficient partially nonlinear model. We propose a novel diagnostic approach for heteroscedasticity of error variance in the model by combining it with the empirical likelihood method. Under some mild conditions, the nonparametric version of the Wilks theorem is obtained. Furthermore, simulation studies and a real data analysis are implemented to evaluate the performances of our proposed approaches.
Citation: Cuiping Wang, Xiaoshuang Zhou, Peixin Zhao. Empirical likelihood based heteroscedasticity diagnostics for varying coefficient partially nonlinear models[J]. AIMS Mathematics, 2024, 9(12): 34705-34719. doi: 10.3934/math.20241652
Heteroscedasticity diagnostics of error variance is essential before performing some statistical inference work. This paper is concerned with the statistical diagnostics for the varying coefficient partially nonlinear model. We propose a novel diagnostic approach for heteroscedasticity of error variance in the model by combining it with the empirical likelihood method. Under some mild conditions, the nonparametric version of the Wilks theorem is obtained. Furthermore, simulation studies and a real data analysis are implemented to evaluate the performances of our proposed approaches.
[1] | T. Li, C. Mei, Estimation and inference for varying coefficient partially nonlinear models, J. Stat. Plan. Infer., 143 (2013), 2023–2037. http://dx.doi.org/10.1016/j.jspi.2013.05.011 doi: 10.1016/j.jspi.2013.05.011 |
[2] | X. Zhou, P. Zhao, X. Wang, Empirical likelihood inferences for varying coefficient partially nonlinear models, J. Appl. Stat., 44 (2017), 474–492. http://dx.doi.org/10.1080/02664763.2016.1177496 doi: 10.1080/02664763.2016.1177496 |
[3] | Y. Jiang, Q. Ji, B. Xie, Robust estimation for the varying coefficient partially nonlinear models, J. Comput. Appl. Math., 326 (2017), 31–43. http://dx.doi.org/10.1016/j.cam.2017.04.028 doi: 10.1016/j.cam.2017.04.028 |
[4] | Y. Xiao, Z. Chen, Bias-corrected estimations in varying-coefficient partially nonlinear models with measurement error in the nonparametric part, J. Appl. Stat., 45 (2018), 586–603. http://dx.doi.org/10.1080/02664763.2017.1288201 doi: 10.1080/02664763.2017.1288201 |
[5] | S. Dai, Z. Huang, Estimation for varying coefficient partially nonlinear models with distorted measurement errors, J. Korean Stat. Soc., 48 (2019), 117–133. http://dx.doi.org/10.1016/j.jkss.2018.09.001 doi: 10.1016/j.jkss.2018.09.001 |
[6] | Y. Qian, Z. Huang, Statistical inference for a varying-coefficient partially nonlinear model with measurement errors, Stat. Methodol., 32 (2016), 122130. http://dx.doi.org/10.1016/j.stamet.2016.05.004 doi: 10.1016/j.stamet.2016.05.004 |
[7] | X. Wang, P. Zhao, H. Du, Statistical inferences for varying coefficient partially nonlinear model with missing covariates, Commun. Stat.-Theor. M., 50 (2021), 2599–2618. http://dx.doi.org/10.1080/03610926.2019.1674870 doi: 10.1080/03610926.2019.1674870 |
[8] | L. Xia, X. Wang, P. Zhao, Y. Song, Empirical likelihood for varying coefficient partially nonlinear model with missing responses, AIMS Mathematics, 6 (2021), 7125–7152. http://dx.doi.org/10.3934/math.2021418 doi: 10.3934/math.2021418 |
[9] | Y. Xiao, L. Liang, Robust estimation and variable selection for varying-coefficient partially nonlinear models based on modal regression, J. Korean Stat. Soc., 51 (2020), 692–715. http://dx.doi.org/10.1007/s42952-021-00158-w doi: 10.1007/s42952-021-00158-w |
[10] | Y. Xiao, Y. Shi, Robust estimation for varying-coefficient partially nonlinear model with nonignorable missing response, AIMS Mathematics, 8 (2023), 29849–29871. http://dx.doi.org/10.3934/math.20231526 doi: 10.3934/math.20231526 |
[11] | X. Zhou, P. Zhao, Estimation and inferences for varying coefficient partially nonlinear quantile models with censoring indicators missing at random, Comput. Stat., 37 (2022), 1727–1750. http://dx.doi.org/10.1007/s00180-021-01192-2 doi: 10.1007/s00180-021-01192-2 |
[12] | H. Wong, F. Liu, M. Chen, W. Ip, Empirical likelihood based diagnostics for heteroscedasticity in partial linear models, Comput. Stat. Data Anal., 53 (2009), 3466–3477. http://dx.doi.org/10.1016/j.csda.2009.02.029 doi: 10.1016/j.csda.2009.02.029 |
[13] | H. Wong, F. Liu, M. Chen, W. Ip, Empirical likelihood based diagnostics for heteroscedasticity in partially linear errors-in-variables models, J. Stat. Plan. Infer., 139 (2009), 916–929. http://dx.doi.org/10.1016/j.jspi.2008.05.049 doi: 10.1016/j.jspi.2008.05.049 |
[14] | G. Fan, H. Liang, J. Wang, Empirical likelihood for a heteroscedastic partial linear errors-in-variables model, Commun. Stat.-Theor. M., 41 (2012), 108–127. http://dx.doi.org/10.1080/03610926.2010.517357 doi: 10.1080/03610926.2010.517357 |
[15] | J. Lin, Y. Zhao, H. Wang, Heteroscedasticity diagnostics in varying-coefficient partially linear regression models and applications in analyzing Boston housing data, J. Applied Statistics, 42 (2015), 2432–2448. http://dx.doi.org/10.1080/02664763.2015.1043623 doi: 10.1080/02664763.2015.1043623 |
[16] | F. Liu, C. Li, P. Wang, X. Kang, Empirical likelihood based diagnostics for heteroscedasticity in semiparametric varying-coefficient partially linear errors-in-variables models, Commun. Stat.-Theor. M., 47 (2018), 5485–5496. http://dx.doi.org/10.1080/03610926.2017.1395050 doi: 10.1080/03610926.2017.1395050 |
[17] | F. Liu, W. Gao, J. He, X. Fu, X. Kang, Empirical likelihood based diagnostics for heteroscedasticity in semiparametric varying-coefficient partially linear models with missing responses, J. Syst. Sci. Complex., 34 (2021), 1175–1188. http://dx.doi.org/10.1007/s11424-020-9240-7 doi: 10.1007/s11424-020-9240-7 |
[18] | A. Owen, Empirical likelihood ratio confidence intervals for single functional, Biometrika, 75 (1988), 237–249. http://dx.doi.org/10.1093/biomet/75.2.237 doi: 10.1093/biomet/75.2.237 |
[19] | A. Owen, Empirical likelihood ratio confidence regions, Ann. Stat., 18 (1990), 90–120. http://dx.doi.org/10.1214/aos/1176347494 doi: 10.1214/aos/1176347494 |
[20] | A. Owen, Empirical likelihood for linear models, Ann. Stat., 19 (1991), 1725–1747. http://dx.doi.org/10.1214/aos/1176348368 doi: 10.1214/aos/1176348368 |
[21] | J. Fan, T. Huang, Profile likelihood inferences on semiparametric varying-coefficient partially linear models, Bernoulli, 11 (2005), 1031–1057. http://dx.doi.org/10.3150/bj/1137421639 doi: 10.3150/bj/1137421639 |
[22] | Y. Sun, H. Yan, W. Zhang, Z. Lu, A semiparametric spatial dynamic model, Ann. Stat., 42 (2014), 700–727. http://dx.doi.org/10.1214/13-AOS1201 doi: 10.1214/13-AOS1201 |
[23] | J. Du, X. Sun, R. Cao, Z. Zhang, Statistical inference for partially linear additive spatial autoregressive models, Spat. Stat., 25 (2018), 52–67. http://dx.doi.org/10.1016/j.spasta.2018.04.008 doi: 10.1016/j.spasta.2018.04.008 |
[24] | S. Cheng, J. Chen, Estimation of partially linear single-index spatialautoregressive model, Stat. Papers, 62 (2021), 495–531. http://dx.doi.org/10.1007/s00362-019-01105-y doi: 10.1007/s00362-019-01105-y |
[25] | H. Zhang, G. Cheng, Y. Liu, Linear or nonlinear? Automatic structure discovery for partially linear models, J. Am. Stat. Assoc., 106 (2011), 1099–1112. http://dx.doi.org/10.1198/jasa.2011.tm10281 doi: 10.1198/jasa.2011.tm10281 |
[26] | S. Wang, M. Wu, Z. Jia, Inequalities in matrix theory (Chinese), 2 Eds., Beijing: Science Press, 2006. |
[27] | J. Gao, Asymptotic theory for partly linear models, Commun. Stat.-Theor. M., 24 (1995), 1985–2009. http://dx.doi.org/10.1080/03610929508831598 doi: 10.1080/03610929508831598 |