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Abstract: Heteroscedasticity diagnostics of error variance is essential before performing some
statistical inference work. This paper is concerned with the statistical diagnostics for the varying
coefficient partially nonlinear model. We propose a novel diagnostic approach for heteroscedasticity
of error variance in the model by combining it with the empirical likelihood method. Under some
mild conditions, the nonparametric version of the Wilks theorem is obtained. Furthermore, simulation
studies and a real data analysis are implemented to evaluate the performances of our proposed
approaches.
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1. Introduction

As one of the most important semiparametric regression models, the varying coefficient partially
linear model (VCPLM), is an integration of the varying-coefficient model and the classic linear model.
It can be described as follows:

Y = XTα(U) + ZTβ + ε, (1.1)

where Y ∈ R represents the response variable, X = (X1, X2, · · · , Xq)T , Z = (Z1,Z2, · · · ,ZP)T and
U ∈ R represent the associated covariates, ε is the model error, β = (β1, · · · , βP)T is an unknown
p-dimensional parameter vector, and α(·) = (α1(·), · · · , αq(·))T is an unknown q-dimensional varying
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coefficient function vector. It has been extensively researched due to the fact that model (1.1) has both
the interpretability of parametric structure and the flexibility of nonparametric structure.

It is observed that the existence form of the unknown β is linear through the function ZTβ in model
(1.1). Actually, the absolute linear relationship may be inappropriate in practical applications. To
further explore more accurate information between Y and some certain covariates, the VCPNLM,
which was introduced by Li and Mei [1], inherits the following form

Y = g(Z, β) + XTα(U) + ε. (1.2)

The difference between these two models is that model (1.2) extends ZTβ in (1.1) to g(Z, β), and g(·, ·)
is set to be a pre-known function. It is notable that the dimensions of the parameter vector β and
the covariate Z in g(Z, β) are not necessarily consistent. Taking the generalized linear model as an
example, we can write exp(a + ZTβ) as g(Z, β̃) with g(·) = exp(·) and β̃ = (a, βT )T , where both a and β
are parameters.

Compared to the VCPLM (1.1), VCPNLM (1.2) has a stronger adaptability. Therefore, it is a of
great significance to conduct some statistical studies related to model (1.2). Fortunately, it has been
extensively researched since its introduction. In the work of Li and Mei [1], they presented the profile
nonlinear least square estimators for both the unknown β and α(·). Zhou et al. [2] developed the
construction of confidence regions for the unknown quantities by employing the empirical likelihood
technique. Jiang et al. [3] put forward a robust estimation approach based on a novel loss function
related to the exponential squared in the case where variables have measurement errors. Xiao and
Chen [4] promoted the local bias-corrected empirical likelihood procedures to deal with the additive
errors for the nonparametric component. Dai and Huang [5] were dedicated to treating the distorted
measurement errors in both the response and the covariates. Qian and Huang [6] proposed the corrected
profile least squares estimation procedure with measurement errors in the nonparametric part. For
model (1.2) with data missing, Wang et al. [7] used the inverse probability weighted profile nonlinear
least squares approach and the empirical likelihood technique to deal with the missing covariates. Xia
et al. [8] developed the statistical inferences with missing responses. Furthermore, Xiao and Liang [9]
performed a robust two-stage estimator method from the aspect of a modal regression. Xiao and
Shi [10] studied the robust estimation for model (1.2) with a nonignorable missing response. Zhou and
Zhao [11] studied model (1.2) under the framework of a quantile regression with the censored response
variable and a missing censoring indicator.

It is noted that all the aforementioned studies were conducted under the assumption of the equal
variances of εi, i = 1, · · · , n, that is Eεi = 0 and Varεi = σ2, i = 1, · · · , n. However, using procedures
for homoscedastic models in the case of heteroscedastic errors may lead to the loss of efficiency.
Therefore, it is crucial and meaningful to ensure the absence of heteroscedasticity before we perform
some statistical inference work. The diagnosis of heteroscedasticity has received sufficient attention
from many scholars. We can refer to [12–14] for partial linear models, and refer to [15–17] for
VCPLMs with measurement errors. As we have seen, some statistical works based on the empirical
likelihood technique ( [18–20]) inherit many advantages. A significant advantage is that there is no
need for a variance estimation. Recently, it has also been shown to work well in the issue of testing
the underlying heteroscedastic errors. Readers can be referred to but not limited to [12–14]. To our
knowledge, research related to the diagnosis of heteroscedasticity for VCPNLM (1.2) by means of the
empirical likelihood technique has not yet emerged.
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Taking all the above statements into account, in this paper, we plan to perform a diagnostic method
for heteroscedasticity based on the empirical likelihood technique in model (1.2). Assuming that the
variance of εi satisfies Varεi = σ2

i , then the hypotheses testing problem can be defined as follows:

H0 : σ2
i = σ2, VS H1 : σ2

i , σ
2, (1.3)

where σ denotes an ordinary constant. We are concerned in constructing a test for heteroscedasticity
by invoking the empirical likelihood technique, which does not specify the distribution of the errors.
Under several regularity conditions, we attempt to derive the corresponding Wilk’s theorem. Finally,
we expect to verify the feasibility of our proposed method through some simulation studies.

The remainder is described as follows: the methodology and the main results of the empirical
likelihood based diagnostics method are introduced in Section 2; some simulation studies are
implemented to exhibit the finite sample performances of our proposed test statistics in Section 3; we
use the Boston housing price data to illustrate our proposed method in Section 4; and the conclusions
and ongoing works are presented in Section 5. The proofs of the main results are presented in the
Appendix.

2. Methodology

Denote {(Yi,Zi, Xi,Ui), i = 1, . . . , n} as the i.i.d. copies of {(Y,Z, X,U)}; then, the individual form of
the VCPNLM is as follows:

Yi = g(Zi, β) + XT
i α(Ui) + εi, i = 1, . . . , n. (2.1)

Suppose that β is known beforehand; then, (2.1) can be reexpressed as the following varying
coefficient model:

Yi − g(Zi, β) =

q∑
j=1

α j(Ui)Xi j + εi, i = 1, · · · , n. (2.2)

First, we employ the classic local linear smooth technique to derive the estimator of {α j(·), j = 1, · · · , q}
in model (2.2). Based on Taylor’s expansion and for u in a small neighborhood of u0, α j(u) can be
locally approximated via the following linear form:

α j(u) ≈ α j(u0) + α′j(u0)(u − u0), j = 1, · · · , q. (2.3)

According to (2.3), the estimator of {(α j(u0), α′j(u0)), j = 1, . . . , q} can be deduced by minimizing the
weighted local least-squares problem as follows:

n∑
i=1

{Yi − g(Zi, β) −
q∑

j=1

[α j(u0) + α′j(u0)(Ui − u0)]Xi j}
2Kh(Ui − u0), (2.4)

where K(·) is the kernel function, Kh(·) has the form K(·/h)/h, and h is the bandwidth which can be
determined by some usual methods.

We introduce the following matrix notations for simplicity in description. Let

Y = (Y1, · · · ,Yn)T , M = (XT
1 α(U1), · · · , XT

n α(Un))T , g(Z, β) = (g(Z1, β), · · · , g(Zn, β))T ,
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K(u0) = diag(Kh(U1 − u0), . . . ,Kh(Un − u0)), H(u0) = (α(u0)T , hα′(u0)T )T ,

and

X(u0) =


XT

1 h−1(U1 − u0)XT
1

...
...

XT
n h−1(Un − u0)XT

n

 .
Under the above matrix representations, the estimator of H(u0) can be derived by the following:

Ĥ(u0) = [X(u0)T K(u0)X(u0)]−1X(u0)T K(u0)[Y − g(Z, β)]. (2.5)

Then, the estimator of α(·) at u0 can be obtained by taking only the first part, that is,

α̂(u0) = (Iq, 0q)[X(u0)T K(u0)X(u0)]−1X(u0)T K(u0)[Y − g(Z, β)], (2.6)

where Iq represents the q × q identity matrix, and 0q represents the q × q matrix for all entries 0.
For the purpose of testing the heteroscedasticity in model (2.1), first we rewrite the expression of

the error variance as follows:
Var (εi) = σ2mi,

where mi > 0. Similar to arguments in Liu et al. [16], we presume that mi possesses the subsequent
sturcture:

mi = m (Ui, γ) . (2.7)

Here, mi is supposed to rely on the known covariate Ui and an unknown q×1 vector γ. It is remarkable
that the structure of the function m(·, ·) is usually known in advance. In addition, we assume that m(·, ·)
is differentiable with respect to γ and there exists a unique γ∗ that satisfies m(Ui, γ

∗) = 1 for all Ui.
Thus, (1.3) is converted to the following hypothesis problem:

H0 : γ = γ∗,VS H1 : γ , γ∗. (2.8)

In order to utilize the empirical likelihood technique, we first consider the following estimation
function: {

h1i = ηi[(Yi − XT
i α(Ui) − g(Zi, β))2 − σ2],

h2i = g̃′(Zi, β)[Yi − XT
i α(Ui) − g(Zi, β)].

(2.9)

Denote ηi = (ṁT
i , 1)T , and ṁi represents the derivative of mi with respect to δ under the null hypothesis

H0. Write hi = (hT
1i, h

T
2i)

T ∈ Rp+q+1; then, we can easily know that E(hi) = 0 under H0. Intuitively, the
above heteroscedasticity test problem is converted to testing whether E(hi) = 0. This can be completed
by means of the empirical likelihood technique.

Denote p1, p2, . . . , pn be some nonnegative numbers whose sum is 1, that is
∑n

i=1 pi = 1. Under the
null hypothesis H0, we can construct the profile empirical likelihood ratio for γ, σ2, β as follows:

R0(γ;σ2, β) = max

 n∏
i=1

npi |

n∑
i=0

pihi = 0, pi ≥ 0,
n∑

i=0

pi = 1

 . (2.10)

Here, β and σ2 are nuisance parameters. It is noteworthy that R0(γ;σ2, β) cannot be used to construct
a test directly, for it contains the unknown γ, β, σ2, and α(·). A measure to deal with this issue is to
substitute α̂(·) for α(·). Therefore, we denote ĥ1i and ĥ2i as follows:{

ĥ1i = ηi[(Yi − XT
i α̂(Ui) − g(Zi, β))2 − σ2],

ĥ2i = g̃′(Zi, β)[Yi − XT
i α̂(Ui) − g(Zi, β)].

(2.11)
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Denote ĥi = (ĥT
1i, ĥ

T
2i)

T . Naturally, the estimated profile empirical likelihood ratio is expressed by the
following:

R(γ;σ2, β) = max{
n∏

i=1

npi |

n∑
i=0

piĥi = 0, pi ≥ 0,
n∑

i=0

pi = 1}. (2.12)

Combining the method of the Lagrange multiplier, we can obtain the optimal value of pi as follows:

pi =
1

n(1 + λT ĥi)
, (2.13)

and λ satisfies the following equation:

1
n

n∑
i=1

ĥi

1 + λT ĥi
= 0. (2.14)

Substituting (2.13) into (2.12), we have the following:

− 2 log R
(
γ;σ2, β

)
= 2

n∑
i=1

log
(
1 + λT ĥi

)
. (2.15)

To establish the nonparametric Wilk’s theorem for −2 log R(γ;σ2, β), the following regularity
conditions C1–C7 are needed with references to Zhou et al. [2], and the condition C8 is needed for
the proof.

C1 The density function f (u) of U is Lipschitz continuous and has bounded away from zero on its
bounded support U.

C2 Γ(u) is a q×q nonsingular matrix for u in the support. Both Γ(u),Γ(u)−1, and Φ(u) are Lipschitz
continuous.

C3 There exists an s > 2 that satisfies E‖X‖2s < ∞, E‖g′(Z, β)‖2s < ∞, E‖ε‖2s < ∞, and E‖U‖2s <

∞, where ‖ · ‖ denotes the Euclidean norm. Meanwhile, for some 0 < δ < 2 − s−1, n2δ−1h→ ∞ holds.
C4 {α′′j (u), j = 1, . . . , q} with respect to u is continuous in U ∈ Ω.
C5 The Kernel function K(·) is a univariate symmetric density function that satisfies the Lipschitz

condition. The functions u3K(u) and u3K′(u) are bounded and
∫

u4K(u)du ≤ ∞.
C6 nh8 → 0 and nh2/(log n)2 → ∞ hold.
C7 g(z, β) is continuous with respect to β for any z, and g′′(z, β) with respect to β are all continuous,

where β ∈ B and B is a compact set.
C8

1
n

( ∑n
i=1 ηiη

τ
i

∑n
i=1 ηig′(Zi, β)∑n

i=1 ηig′(Zi, β)T ∑n
i=1 g′(Zi, β)g′(Zi, β)T

)
→ Σ ,

(
B11 B12

B21 B22

)
,

and
B11 > 0, B22 > 0.

The following Theorem 1 describes the asymptotic behavior of −2logR(γ;σ2, β).

Theorem 1. Suppose that Conditions C1–C8 hold. Under the null hypothesis, we have the following:

−2 log R
(
γ;σ2, β

) L
→ χ2

p+q+1,

where “
L
−→” represents the convergence in distribution and χ2

p+q+1 represents the chi-square
distribution with p + q + 1 degrees of freedom.
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To deal with the so-called nuisance parameters β and σ2, under the null hypothesis H0, we address

R(γ) , max
σ2, β

R
(
γ;σ2, β

)
, (2.16)

that is, maximizing (2.16) with respect to β and σ2. Then, R(γ) has the following asymptotic result:

R(γ)
L
→ χ2

q.

3. Simulation study

In this section, we assess the finite sample performances of our proposed work by some simulation
studies. Let the data be generated from the following VCPNLM:

Y = g(Z, β) + Xα(U) + ε. (3.1)

Specifically, g(Z, β) = exp{Zβ} with β = 2 and α(U) = sin(2πU). The model error ε is supposed to
come from the normal distribution (Case 1) and the uniform distribution (Case 2), respectively, with
E(ε|X,Z,U) = 0 and Var(ε|X,Z,U) = σ2m(U, γ), where σ2 = 1, m(U, γ) = exp(γU). Obviously, γ = 0
corresponds to the null hypothesis, and γ , 0 corresponds to the alternative hypothesis. Moreover,
in the following simulation, the covariates are generated on the base of Z ∼ N(0, 1), X ∼ N(0, 1) and
U ∼ U(0, 1), and naturally Y is generated according to the model (3.1). Throughout the simulation
studies, we select the Epanechnikov kernel K(u) = 3

4 (1 − u2)+ as the kernel function in our simulation,
and the bandwidth h is taken as h = cn−1/5, where the constant c is chosen as the standard deviation of
the covariate U.

To evaluate the performance of the proposed method, the sample size in our simulation is taken as
n = 200, 400, and 600, respectively, and the nominal level is 0.05. For each situation, we repeat 1000
simulation replications. With these replications, the power of the proposed empirical likelihood ratio
test is displayed in Table 1 and Figure 1. Then, we can make the following observations:

(i) The power declines rapidly when the null hypothesis holds, and it converges to the correct nominal
level when the sample increases. This result declares that our proposed testing method can control
the probability of making the Type I error.

(ii) For any given n, the simulation performances under different error distribution cases are very
similar. This result also indicates that our proposed test method is efficient for different model
errors.

(iii) The power quickly tends to 1 when the sample increases and when the alternative hypothesis
holds. In this respect, we can also demonstrate that our proposed heteroscedasticity test for the
VCPNLM is effective.

Next, we compare the proposed empirical likelihood ratio test method with the profile likelihood
ratio (PLR) test method used in [21]. In this simulation, the nominal level is taken as α = 0.05,
the sample size is taken n = 400, and the experiments are repeated 1000 times for each case. The
simulation results of the 1000 replicates are shown in Figure 2, where the dashed line is the empirical
power function based on the empirical likelihood ratio (ELR) test method proposed by this paper, and
the dotted line is the empirical power function based on the PLR method.

AIMS Mathematics Volume 9, Issue 12, 34705–34719.



34711

From Figure 2, we can see that the empirical power functions obtained by the ELR test method and
the PLR test method both rapidly increase as the value of γ increases. In addition, the empirical power
derived with the ELR test method, is superior to that obtained by the PLR test method.

Table 1. The power of empirical likelihood ratio test under different model errors.

Model error n γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8
Case 1 200 0.099 0.166 0.404 0.689 0.893

400 0.074 0.258 0.647 0.944 0.994
600 0.051 0.320 0.859 0.992 1.000

Case 2 200 0.091 0.156 0.433 0.712 0.906
400 0.079 0.250 0.683 0.946 0.998
600 0.050 0.362 0.842 0.993 1.000
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Figure 1. The power curves of empirical likelihood ratio test under model errors.
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Figure 2. The testing power of the ELR and PLR methods under n = 400.
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4. Application to Boston housing price data

In this section, we analyse the Boston housing price data to illustrate the model testing procedure
proposed by this paper. The data set contains information of 506 different houses from a variety
of locations in Boston Standard Metropolitan Statistical Area in 1970. Many researchers have
analyzed this data set by using the partially linear additive model, the partially linear additive spatial
autoregressive model, the partially linear single-index model, and other semiparametric models (see
in [22–24]). The objective of these studies is to evaluate the influencing factors of the price of owner-
occupied homes such as the the per capita crime rate by town, the weighted distances to five Boston
employment centres, the average number of rooms per dwelling, and other factors. Hence, for the
purpose of our demonstration, we take the indexes as the pupil-teacher ratio by town (denoted by
PTRATIO), the index of accessibility to radial highways(denoted by RAD), the percentage of lower
status of the population (denoted by LSTAT), the per capita crime rate by town (denoted by CRIME),
and the median value of owner-occupied homes in USD 1000’s (denoted by MEDV).

In addition, [25] pointed that the covariate CRIME has a nonlinear effect on the response. Hence,
we fit this data set by using the following model:

Yi = exp(Zi1β1 + Zi2β2) + Xiα(Ui) + εi, i = 1, · · · , 506,

where Yi is the response MEDV, Ui is the covariate CRIME, Xi is the covariate log(LSTAT), and Zi1 and
Zi2 are covariates RAD and PTRATIO, respectively. The logarithmic transformation for the covariate
LSTAT is taken to ease off the trouble caused by big gaps in the domain.

Here, we consider the null hypothesises H0 : Var(εi|Zi1,Zi2, Xi,Ui) ≡ σ2. By using the ELR testing
procedure proposed by this paper, we find that the p-value of this testing problem is 0.3484. This
means that the null hypotheses can not be rejected under the nominal level 0.05, which also implies
that the model error ε does not have significant effect on the covariates.

5. Conclusions

In this paper, we were concerned with the statistical inferences for the VCPNLM. Combining
the empirical likelihood method, we proposed a diagnostic technique for heteroscedasticity in the
semiparametric varying-coefficient partially nonlinear models. Under some mild conditions, the
nonparametric version of Wilks theorem was derived and proven. Furthermore, simulation studies
were performed to illustrate the performances of our proposed methods. As we have known, missing
data is common in many fields. Ignoring the missing data will result in the reduction of effective
information. Therefore, our forthcoming work is to implement the the statistical inferences for the
VCPNLM in the case of missing data.
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Appendix

Several Lemmas are needed to prove the main result.

Lemma 1. Assuming that Conditions C1–C8 hold. Then we get the following conclusions:

max
1≤ j≤q

sup
u∈U

∣∣∣α̂ j(u) − α j(u)
∣∣∣ = O (dn) a.s.,

and dn = h2 + (log n/nh)1/2. If h = dn−1/5 with a constant d, then we have

max
1≤ j≤q

sup
u∈U

∣∣∣α̂ j(u) − α j(u)
∣∣∣ = O

(
n−2/5(log n)1/2)

a.s.

Proof. The proof can be derived in [2]. �

Lemma 2. B =

(
B11 B12

B21 B22

)
is a real symmetric matrix, if B22 > 0, write B11.2 , B11 − B12B−1

22 B21,

then we have
(a) B > 0⇔ B22 > 0, B11.2 > 0.
(b) If B22 > 0, then B ≥ 0⇔ B11.2 ≥ 0.

Proof. The proof can be seen in [26]. �

Lemma 3. Let θi, i = 1, · · · , n be i.i.d. random variables with E (θi) = 0 and Var (θi) = σ2 < ∞, then
for any permutation (l1, l2, · · · , ln) of (1, 2, · · · , n), we have

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

θli

∣∣∣∣∣∣∣ = O
(
n1/2 log n

)
a.s.

Proof. The proof of Lemma 3 can be referred to [27]. �

Lemma 4. Assuming that Conditions C1–C8 and H0 hold, then we have

1
√

n

n∑
i=1

ĥi =
1
√

n

n∑
i=1

hi + op(1).

Proof. Firstly, we prove
(1). 1

√
n

∑n
i=1 ĥ1i = 1

√
n

∑n
i=1 h1i + op(1),
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(2). 1
√

n

∑n
i=1 ĥ2i = 1

√
n

∑n
i=1 h2i + op(1).

Firstly, we consider the component 1
√

n

∑n
i=1 ĥ1i,

1
√

n

n∑
i=1

ĥ1i =
1
√

n

n∑
i=1

ηi

[
(Yi − XT

i α̂(Ui) − g(Zi, β))2 − σ2
]

=
1
√

n

n∑
i=1

ηi

(
ε2

i − σ
2
)
−

2
√

n

n∑
i=1

ηiεi[XT
i α̂(Ui) − XT

i α(Ui)] +
1
√

n

n∑
i=1

ηi[XT
i α̂(Ui) − XT

i α(Ui)]2

,
1
√

n

n∑
i=1

ηi

(
ε2

i − σ
2
)

+ R1 + R2,

where R1 = 2
√

n

∑n
i=1 ηiεi[XT

i α̂(Ui) − XT
i α(Ui)] and R2 = 1

√
n

∑n
i=1 ηi[XT

i α̂(Ui) − XT
i α(Ui)]2. Therefore,

we can derive that

|R1| =
2
√

n

∣∣∣∣∣∣∣
n∑

i=1

ηiεi(XT
i α̂(Ui) − XT

i α(Ui))

∣∣∣∣∣∣∣
≤

2
√

n
sup
1≤i≤n
‖ηi‖ · max

1≤k≤n

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥ · sup
1≤i≤n
‖(α̂(Ui) − α(Ui))‖ ·max

1≤i≤n
‖Xi‖

=op(1).

Similar to the discussion of R1, R2 = op(1) holds. Then

1
√

n

n∑
i=1

ĥ1i =
1
√

n

n∑
i=1

ηi

(
ε2

i − σ
2
)

+ op(1).

Next, we consider the component 1
√

n

∑n
i=1 ĥ2i,

1
√

n

n∑
i=1

ĥ2i =
1
√

n

n∑
i=1

g̃′(Zi, β)
[
Yi − XT

i α̂(Ui) − g(Zi, β)
]

=
1
√

n

n∑
i=1

g̃′(Zi, β)εi −
1
√

n

n∑
i=1

g̃′(Zi, β)[XT
i α̂(Ui) − XT

i α(Ui)],

where ∥∥∥∥∥∥∥ 1
√

n

n∑
i=1

g̃′(Zi, β)[XT
i α̂(Ui) − XT

i α(Ui)]

∥∥∥∥∥∥∥
≤
√

n max
1≤i≤n
‖g̃′(Zi, β)‖ ·max

1≤i≤n
‖Xi‖ · sup

1≤i≤n
‖α̂(Ui) − α(Ui)‖

=op(1).

So 1
√

n

∑n
i=1 ĥ2i = 1

√
n

∑n
i=1 g̃′(Zi, β)εi + op(1). �

Lemma 5. Assuming that Conditions C1–C8 and H0 hold. Then

1
√

n

n∑
i=1

ĥi
L
→ N

(
0,Σ′

)
.
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Proof. Denote b = (bT
1 , b

T
2 )T , where b1 ∈ Rq+1 and b1 ∈ Rp, Therefore, b can be regarded as a (p+q+1)-

dimensional vector.

(bT
1 , b

T
2 )

( ∑n
i=1 ηi(ε2

i − σ
2)∑n

i=1 g′(Zi, β)εi

)
=

n∑
i=1

(
bT

1 ηi

(
ε2

i − σ
2
)

+ bT
2 g′(Zi, β)εi

)
,

n∑
i=1

ξi.

Denote µi = Eεi, then we have µ1 = Eε = 0 and µ2 = Eε2 = σ2,

Var(ξi) = (bT
1 , b

T
2 )

(
ηiη

T
i (µ4 − µ

2
2) ηig′(Zi, β)Tµ3

ziη
T
i µ3 g′(Zi, β)g′(Zi, β)Tµ2

) (
b1

b2

)
.

According to Condition C8, matrix Σ =

(
B11 B12

B21 B22

)
is nonnegative definite.

We know matrix B22 > 0 and B11 − B12B−1
22 B21 ≥ 0 from Lemma 3(b), this together with Cauchy-

Schwartz inequality show that

µ2
3 =

(
E

(
ε2

i − σ
2
)
εi

)2
< E

(
ε2

i − σ
2
)2

Eε2
i =

(
µ4 − µ

2
2

)
µ2.

Since the relationship between the εi and ε2
i −σ

2 is nonlinear, the above inequality holds strictly. Then,

B11

(
µ4 − µ

2
2

)
− B12B−1

22 B21µ
2
3/µ2 >

(
B11 − B12B−1

22 B21

)
µ2

3/µ2 ≥ 0.

Naturally, we get B11

(
µ4 − µ

2
2

)
− B12B−1

22 B21µ
2
3/µ2 > 0, B22µ2 > 0, it follows from Lemma 3 that B11

(
µ4 − µ

2
2

)
B12µ3

B21µ3 B22µ2

 , Σ′

is a positive definite matrix. This indicates that the Lindeberg Condition is met. So by means of the
Lindeberg-Feller central limit theorem, we obtain

1
√

n

n∑
i=1

bτĥi
L
→ N

(
0, bτΣ′b

)
.

This together with Cramer-Wold method, we deduce that 1
√

n

∑n
i=1 ĥi

L
→ N (0,Σ′) . The proof is finished.

�

Lemma 6. Under null hypothesis and conditions C1–C6, we have

1
n

n∑
i=1

ĥiĥT
i
P
→ Σ′.

Proof. It is easy to obtain that

1
n

n∑
i=1

ĥiĥT
i =

1
n

( ∑n
i=1 ĥ1iĥτ1i

∑n
i=1 ĥ1iĥT

2i∑n
i=1 ĥ2iĥτ1i

∑n
i=1 ĥ2iĥT

2i

)
,
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1
n

n∑
i=1

ĥ1iĥT
1i =

1
n

n∑
i=1

ηiη
T
i [(Yi − XT

i α̂(Ui) − g(Zi, β))2 − σ2]2

=
1
n

n∑
i=1

ηiη
T
i

[
ε2

i − σ
2 +

(
XT

i α̂(Ui) − XT
i α(Ui)

)2
+ 2εi

(
XT

i α̂(Ui) − XT
i α(Ui)

)]2

=
1
n

n∑
i=1

ηiη
T
i

(
ε2

i − σ
2
)2

+
1
n

n∑
i=1

ηiη
τ
i

(
XT

i α̂(Ui) − XT
i α(Ui)

)4

+
4
n

n∑
i=1

ηiη
T
i ε

2
i

(
XT

i α̂(Ui) − XT
i α(Ui)

)2

+
2
n

n∑
i=1

ηiη
T
i

(
ε2

i − σ
2
) (

XT
i α̂(Ui) − XT

i α(Ui)
)2

+
4
n

n∑
i=1

ηiη
T
i

(
ε2

i − σ
2
)
εi

(
XT

i α̂(Ui) − XT
i α(Ui)

)
+

4
n

n∑
i=1

ηiη
τ
i εi

(
XT

i α̂(Ui) − XT
i α(Ui)

)3

=
1
n

n∑
i=1

ηiη
T
i

(
ε2

i − σ
2
)2

+
1
n

n∑
i=1

ηiη
T
i

(
XT

i α̂(Ui) − XT
i α(Ui)

)4

+
6
n

n∑
i=1

ηiη
τ
i ε

2
i

(
XT

i α̂(Ui) − XT
i α(Ui)

)2

−
2
n
σ2

n∑
i=1

ηiη
τ
i

(
XT

i α̂(Ui) − XT
i α(Ui)

)2

+
4
n

n∑
i=1

ηiη
τ
i ε

3
i

(
XT

i α̂(Ui) − XT
i α(Ui)

)
−

4
n
σ2

n∑
i=1

ηiη
τ
i εi

(
XT

i α̂(Ui) − XT
i α(Ui)

)
+

4
n

n∑
i=1

ηiη
τ
i εi

(
XT

i α̂(Ui) − XT
i α(Ui)

)3

=
1
n

n∑
i=1

h1ihT
1i + N1 + N2 + N3 + N4 + N5 + N6.

Using Condition C6 and Lemma 1, we get

|N1| =

∣∣∣∣∣∣∣1n
n∑

i=1

(
XT

i α̂(Ui) − XT
i α(Ui)

)4

∣∣∣∣∣∣∣ ≤ sup
1≤i≤n

∥∥∥XT
i α̂(Ui) − XT

i α(Ui)
∥∥∥4

= O
(
C4

n

)
Op(1) = op(1).

Using the similar derivation method, we arrive at the following conclusion

Ni = op(1), i = 2, · · · , 6.
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Moreover, we have
1
n

n∑
i=1

ĥiĥτi =
1
n

n∑
i=1

hihτi + op(1).

Invoking the law of large number, it is easy to get

1
n

n∑
i=1

ĥiĥT
i
P
→ Σ′.

�

Lemma 7. Denote ĥmax = max{ĥ1, · · · , ĥn}, then under the null hypothesis and Conditions C1–C8, it
holds

ĥmax = op(n1/2).

Proof. The proof can be inspired from [18]. �

Lemma 8. The conclusion about the the Lagrange multiplier λ is as follows:

‖λ‖ = Op

(
n−1/2

)
.

Proof. It can be get from [18], thus we omit here. �

Proof of Theorem 1. Based on the above Lemmas 7 and 8 and the Taylor expansion of (2.15), we
deduce that

−2 log R
(
γ;σ2, β

)
= 2

n∑
i=1

(
λT ĥi −

1
2

(
λT ĥi

)2
)

+ op(1).

By Lemmas 5–8, we have

−2 log R(γ;σ2, β) =

 1
√

n

n∑
i=1

ĥi

T 1
n

n∑
i=1

ĥiĥT
i

−1

(
1
√

n

n∑
i=1

ĥi) + op(1).

Similar to [18], −2 log R
(
γ;σ2, β

) L
→ χ2

p+q+1 can be derived. Theorem 1 follows clearly. �
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