Soft rough fuzzy sets ($ \mathcal SRFSs $) represent a powerful paradigm that integrates soft computing, rough set theory, and fuzzy logic. This research aimed to comprehensively investigate the various dimensions of $ \mathcal SRFSs $ within the domain of approximation structures. The study encompassed a wide spectrum of concepts, ranging from covering approximation structures and soft rough coverings to soft neighborhoods, fuzzy covering approximation operators, and soft fuzzy covering approximation operators. We introduced three models of $ \mathcal SRFSs $ based on covering via the core of soft neighborhood. We discussed and analyzed our models' characteristics and properties. The relations between our models for soft fuzzy covering sets and Zhan's model for soft rough fuzzy covering were presented.
Citation: R. Mareay, Radwan Abu-Gdairi, M. Badr. Soft rough fuzzy sets based on covering[J]. AIMS Mathematics, 2024, 9(5): 11180-11193. doi: 10.3934/math.2024548
Soft rough fuzzy sets ($ \mathcal SRFSs $) represent a powerful paradigm that integrates soft computing, rough set theory, and fuzzy logic. This research aimed to comprehensively investigate the various dimensions of $ \mathcal SRFSs $ within the domain of approximation structures. The study encompassed a wide spectrum of concepts, ranging from covering approximation structures and soft rough coverings to soft neighborhoods, fuzzy covering approximation operators, and soft fuzzy covering approximation operators. We introduced three models of $ \mathcal SRFSs $ based on covering via the core of soft neighborhood. We discussed and analyzed our models' characteristics and properties. The relations between our models for soft fuzzy covering sets and Zhan's model for soft rough fuzzy covering were presented.
[1] | Z. A. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956 |
[2] | Z. Pawlak, Rough concept analysis, Bulletin of the Polish Academy of Sciences Mathematics, 33 (1985), 9–10. |
[3] | M. Atef, A. M. Khalil, S. G. Li, A. A. Azzam, A. E. F. El Atik, Comparison of six types of rough approximations based on j-neighborhood structure and j-adhesion neighborhood structure, J. Intell. Fuzzy Syst., 39 (2020), 4515–4531. https://doi.org/10.3233/JIFS-200482 doi: 10.3233/JIFS-200482 |
[4] | J. C. R. Alcantud, J. Zhan, Multi-granular soft rough covering sets, Soft Comput., 24 (2020), 9391–9402. https://doi.org/10.1007/s00500-020-04987-5 doi: 10.1007/s00500-020-04987-5 |
[5] | R. Mareay, R. Abu-Gdairi, M. Badr, Modeling of COVID-19 in view of rough topology, Axioms, 12 (2023), 663. https://doi.org/10.3390/axioms12070663 doi: 10.3390/axioms12070663 |
[6] | A. A. Azzam, A. M. Nasr, H. ElGhawalby, R. Mareay, Application on similarity relation and pretopology, Fractal Fract., 7 (2023), 168. https://doi.org/10.3390/fractalfract7020168 doi: 10.3390/fractalfract7020168 |
[7] | Q. Hu, L. Zhang, D. Chen, W. Pedrycz, D. Yu, Gaussian kernel based fuzzy rough sets: Model, uncertainty measures and applications, Int. J. Approx. Reason., 51 (2010), 453–471. https://doi.org/10.1016/j.ijar.2010.01.004 doi: 10.1016/j.ijar.2010.01.004 |
[8] | S. Boffa, B. Gerla, Sequences of refinements of rough sets: Logical and algebraic aspects, In: Transactions on Rough Sets XXII, Springer, Berlin, Heidelberg, 12485 (2020), 26–122. https://doi.org/10.1007/978-3-662-62798-3_3 |
[9] | S. Boffa, B. Gerla, Kleene algebras as sequences of orthopairs, In: Advances in Intelligent Systems and Computing, Springer, Cham, 641 (2018). https://doi.org/10.1007/978-3-319-66830-7_22 |
[10] | Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sciences, 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3 |
[11] | Y. Yao, B. Yao, Covering based rough set approximations, Inform. Sciences, 200 (2012), 91–107. https://doi.org/10.1016/j.ins.2012.02.065 doi: 10.1016/j.ins.2012.02.065 |
[12] | I. Couso, D. Dubois, Rough sets, coverings and incomplete information, Fund. Inform., 108 (2011), 223–247. https://doi.org/10.3233/FI-2011-421 doi: 10.3233/FI-2011-421 |
[13] | Z. Bonikowski, E. Bryniarski, U. Wybraniec-Skardowska, Extensions and intentions in the rough set theory, Inform. Sciences, 107 (1998), 149–167. https://doi.org/10.1016/S0020-0255(97)10046-9 doi: 10.1016/S0020-0255(97)10046-9 |
[14] | W. Zhu, F. Y. Wang, On three types of covering-based rough sets, IEEE T. Knowl. Data En., 19 (2007), 1131–1144. https://doi.org/10.1109/TKDE.2007.1044 doi: 10.1109/TKDE.2007.1044 |
[15] | W. Zhu, F. Y. Wang, The fourth type of covering-based rough sets, Inform. Sciences, 201 (2012), 80–92. https://doi.org/10.1016/j.ins.2012.01.026 doi: 10.1016/j.ins.2012.01.026 |
[16] | E. C. C. Tsang, C. Degang, D. S. Yeung, Approximations and reducts with covering generalized rough sets, Comput. Math. Appl., 56 (2008), 279–289. https://doi.org/10.1016/j.camwa.2006.12.104 doi: 10.1016/j.camwa.2006.12.104 |
[17] | R. Mareay, I. Noaman, R. Abu-Gdairi, M. Badr, On covering-based rough intuitionistic fuzzy sets, Mathematics, 10 (2022), 4079. https://doi.org/10.3390/math10214079 doi: 10.3390/math10214079 |
[18] | X. Song, G. Liu, J. Liu, The relationship between coverings and tolerance relations, Int. J. Granul. Comput. Rough Set. Intell. Syst., 2010,343–354. https://doi.org/10.1504/IJGCRSIS.2010.036977 doi: 10.1504/IJGCRSIS.2010.036977 |
[19] | D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107 |
[20] | T. Feng, S. P. Zhang, J. S. Mi, The reduction and fusion of fuzzy covering systems based on the evidence theory, Int. J. Approx. Reason., 53 (2012), 87–103. https://doi.org/10.1016/j.ijar.2011.10.002 doi: 10.1016/j.ijar.2011.10.002 |
[21] | T. J. Li, Y. Leung, W. X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy coverings, Int. J. Approx. Reason., 48 (2008), 836–856. https://doi.org/10.1016/j.ijar.2008.01.006 doi: 10.1016/j.ijar.2008.01.006 |
[22] | T. Deng, Y. Chen, W. Xu, Q. Dai, A novel approach to fuzzy rough sets based on a fuzzy covering, Inform. Sciences, 177 (2007), 2308–2326. https://doi.org/10.1016/j.ins.2006.11.013 doi: 10.1016/j.ins.2006.11.013 |
[23] | L. Ma, Two fuzzy covering rough set models and their generalizations over fuzzy lattices, Fuzzy Set. Syst., 294 (2016), 1–17. https://doi.org/10.1016/j.fss.2015.05.002 doi: 10.1016/j.fss.2015.05.002 |
[24] | B. Yang, B. Q. Hu, On some types of fuzzy covering-based rough sets, Fuzzy Set. Syst., 312 (2017), 36–65. https://doi.org/10.1016/j.fss.2016.10.009 doi: 10.1016/j.fss.2016.10.009 |
[25] | A. A. El-Atik, R. Abu-Gdairi, A. A. Nasef, S. Jafari, M. Badr, Fuzzy soft sets and decision making in ideal nutrition, Symmetry, 15 (2023), 1523. https://doi.org/10.3390/sym15081523 doi: 10.3390/sym15081523 |
[26] | B. Yang, B. Q. Hu, Fuzzy neighborhood operators and derived fuzzy coverings, Fuzzy Set. Syst., 370 (2019), 1–33. https://doi.org/10.1016/j.fss.2018.05.017 doi: 10.1016/j.fss.2018.05.017 |
[27] | L. Deer, C. Cornelis, L. Godo, Fuzzy neighborhood operators based on fuzzy coverings, Fuzzy Set. Syst., 312 (2107), 17–35. https://doi.org/10.1016/j.fss.2016.04.003 doi: 10.1016/j.fss.2016.04.003 |
[28] | D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[29] | D. Molodtsov, V. Y. Leonov, D. V. Kovkov, Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya, 1 (2006), 8–39. |
[30] | S. Oztunc, S. Aslan, H. Dutta, Categorical structures of soft groups, Soft Comput., 25 (2021), 3059–3064. https://doi.org/10.1007/s00500-020-05362-0 doi: 10.1007/s00500-020-05362-0 |
[31] | A. Mukherjee, Introduction to fuzzy sets, rough sets, and soft sets, In: Studies in Fuzziness and Soft Computing, Springer, New Delhi, 324 (2015), 1–22. https://doi.org/10.1007/978-81-322-2458-7_1 |
[32] | B. Sun, W. Ma, Soft fuzzy rough sets and its application in decision making, Artif. Intell. Rev., 41 (2014), 67–80. https://doi.org/10.1007/s10462-011-9298-7 doi: 10.1007/s10462-011-9298-7 |
[33] | J. Zhan, B. Sun, Covering-based soft fuzzy rough theory and its application to multiple criteria decision making, Comput. Appl. Math., 38 (2019), 149. https://doi.org/10.1007/s40314-019-0931-4 doi: 10.1007/s40314-019-0931-4 |
[34] | J. Zhan, B. Sun, On three types of soft rough covering-based fuzzy sets, J. Math., 2021 (2021), 6677298. https://doi.org/10.1155/2021/6677298 doi: 10.1155/2021/6677298 |
[35] | Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Boston, 1991. |
[36] | W. Zhu, F. Y. Wang, Reduction and axiomization of covering generalized rough sets, Inform. Sciences, 152 (2003), 217–230. https://doi.org/10.1016/S0020-0255(03)00056-2 doi: 10.1016/S0020-0255(03)00056-2 |
[37] | F. Feng, Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inform., 2 (2011), 69–80. |
[38] | F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6 |