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Abstract: Soft rough fuzzy sets (SRFS s) represent a powerful paradigm that integrates soft
computing, rough set theory, and fuzzy logic. This research aimed to comprehensively investigate the
various dimensions of SRFS s within the domain of approximation structures. The study encompassed
a wide spectrum of concepts, ranging from covering approximation structures and soft rough coverings
to soft neighborhoods, fuzzy covering approximation operators, and soft fuzzy covering approximation
operators. We introduced three models of SRFS s based on covering via the core of soft neighborhood.
We discussed and analyzed our models’ characteristics and properties. The relations between our
models for soft fuzzy covering sets and Zhan’s model for soft rough fuzzy covering were presented.
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1. Introduction

Pawlak introduced the rough set theory [1, 2] as a conceptual framework designed to address the
challenges posed by vagueness and uncertainty inherent in data analysis and information systems.
Atef et al. [3] discussed the generalization of three types of rough set models based on j-neighborhood
structure and explored some of their basic properties. Alcantud et al. [4] introduced a new model
that combines multi-granularity, soft set, and rough set-based overlays. It strives to provide a hybrid
model that captures the strengths of each theory and can be applied to a variety of industries. Another
approximation space based on topological near open sets and the properties of these spaces is presented
by Mareay et al. [5]. It also includes an algorithm to detect the side effects of the COVID-19
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infection. Azzam et al. [6] discussed a proposed reduction method based on similarity relations and
pretopology concepts, as well as new pretopological structures for creating information systems. Hu
et al. [7] discussed the combination of kernel methods and rough sets in machine learning. It also
proposes a fuzzy rough set model and a Gaussian kernel approximation algorithm for feature ranking
and reduction. Rough sets and their applications have attracted many researchers in different fields.
Stefania Boffa discussed “Sequences of Refinements of Rough Sets”. The idea discussed in the thesis
is known as “sequences of orthopairs” within the generalized hard set theory. This notion aims to
establish operations between sequences of orthopairs and explore methods for generating them based
on operations related to common rough sets [8]. The writer demonstrates multiple representation
theorems for the class of finite centered Kleene algebras [9].

Covering based rough set involves the utilization of sets to approximate other sets [10–12].
Bonikowski et al. [13] put forth a new model of covering sets via minimal description concepts.
Many other models of covering rough set depending on the neighborhood and the complementary
neighborhood are proposed in [14–16]. An intuitionistic fuzzy set (IFS) on the structure of rough
sets based on covering is introduced by using the notion of the neighborhood in [17]. It defines three
models of IFS approximation structure based on covering. Interestingly, any covering can be linked
to a tolerance relation, and vice versa. This technique leaves the upper approximations in rough set
theory unchanged. An axiomatic description of the second type of covering higher approximations is
also given. Tolerance relations and coverings are powerful tools for comprehending the structure and
interactions within sets. Partitions and overlapping covers are mathematical constructions that assist in
understanding similarity and discernment [18].

In 1990, Dubois and Prade [19] introduced rough fuzzy sets and fuzzy rough sets, which marked a
significant development in the field. Scholars have extensively explored these concepts, as evidenced
by studies conducted by various researchers [20–25]. Deng et al. [22] introduced fuzzy covering based
on fuzzy relations in 2007, while Ma [23] devised two categories of fuzzy covering rough sets in
2016 using fuzzy β-neighborhood. In 2017, Yang and Hu [24] established various types of fuzzy
covering-based rough sets through fuzzy β-neighborhood. Hu [26] conducted a comprehensive study
in 2019, investigating four types of fuzzy neighborhood operators and their properties by introducing
the concept of fuzzy β-minimal description. Deer et al. [27] delved into fuzzy neighborhoods based on
fuzzy covering.

In the realm of soft computing, the synergy of soft sets, rough sets, and fuzzy sets has emerged as a
pivotal area of research, providing a nuanced framework for handling uncertainties in diverse domains.
The foundational principles of soft set theory were initially formulated by Molodtsov [28] as a versatile
mathematical framework tailored to address vagueness and uncertainty. Subsequently, an expanding
body of research has explored the properties and advantages of soft set theory [29, 30].
SRFS s incorporate elements from three distinct mathematical frameworks: Rough sets, fuzzy sets,

and soft sets. In this hybrid model, we examine uncertainty, ambiguity, and indiscernibility at the
same time. SRFS enables us to manage imprecise data and make more flexible decisions. Researchers
investigated many algebraic structures and operations within this paradigm [31]. The SRFS model
builds on classical rough set theory by including fuzzy membership degrees. It addresses ambiguity and
gentle transitions between different granularities. By combining rough set approximations with fuzzy
membership functions, this paradigm improves our capacity to analyze complex data. Applications
include data mining, pattern recognition, and decision-making [32]. Zhan [33] introduced the concept
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of soft fuzzy rough set-based covering through the notion of soft neighborhoods. Zhan’s model for
soft rough fuzzy coverings stands at the forefront of this convergence, offering a distinctive perspective
on the interplay between soft, rough, and fuzzy characteristics. The relations between models for
soft rough fuzzy covering sets and Zhan’s model for SRF covering must be investigated in order to
comprehend their synergy. These relations shed light on how various mathematical constructs can be
combined or related. Researchers explore the implications of these connections and their practical
applications in [34].

Throughout in this paper, we analyze and enhance Zhan’s model for soft rough fuzzy coverings,
emphasizing the interplay between soft, rough, and fuzzy characteristics and developing mathematical
formulations and algorithms for accurate representation and manipulation. For Zhan’s model, we
increase the lower approximation while simultaneously reducing the upper approximation to make it
more accurate. Furthermore, we introduce three novel models of SRFS s, strategically grounded in the
concept of covering via the core of the neighborhood concept. These additions are crafted to address
specific challenges and intricacies encountered in real-world applications, where the management of
uncertainties is paramount.

First, we present the basic concepts of rough sets and soft sets. Second, a new model of SRFS s
based on covering is introduced in Section 3 by using the core of the neighborhood concept. We put
forth new other two models of soft rough fuzzy covering SRFC based on neighborhood in Section 4
and established the relations between our models and Zhan’s model. The conclusions are presented in
Section 5.

2. Basic concepts of rough sets and soft set theory

Along this section, consider R as an equivalence relation on a nonempty set U. Hence, U/R =

{Y1,Y2,Y3, ...,Ym} is a partition onU, where R is an equivalence relation that generates the classes of
equivalence Y1,Y2,Y3, ...,Ym. For the soft set, considerU is a universe set, A is a set of parameters
onU, P(U) is the power set ofU, and we fix a soft set 0G = (F ,A) overU.

Definition 2.1. [35] If X1 ⊆ U andU , φ, then the set of approximation operators lower (upper) is
defined as : R(X1) =

⋃
{Yi ∈ U/R : Yi ⊆ X1}. R(X1) =

⋃
{Yi ∈ U/R : Yi ∩ X1 , ∅}, respectively.

Proposition 2.1. [35] If K = (U,R) is an approximation structure, then the following axioms hold
for Q1,Q2 ⊆ U :

(I) R(Q1) = Q1, R(Q1) = Q1;
(II) R(∅) = ∅, R(∅) = ∅;

(III) R(Q1) ⊆ Q1 ⊆ R(Q1);
(IV) R(Q1 ∩ Q2) = R(Q1) ∩ R(Q2);
(V) R(Q1 ∪ Q2) = R(Q1) ∪ R(Q2);

(VI) R(Qc
1) = [R(Q1)]c, where (Qc

1) is the complement of Q1;
(VII) R(R(Q1)) = R(Q1);

(VIII) R(R(Q1)) = R(Q1);
(IX) Q1 ⊆ Q2 ⇒ R(Q1) ⊆ R(Q2) and R(Q1) ⊆ R(Q2);
(X) R(R(Q1))c = (R(Q1))c, R(R(Q1))c = (R(Q1))c;

(XI) R(Q1) ∪ R(Q2) ⊆ R(Q1 ∪ Q2);
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(XII) R(Q1 ∩ Q2) ⊆ R(Y) ∩ R(Q2).

Definition 2.2. [13] Consider C is a family of subsets of the universe U. We call C a covering of U
if ∪ C = U, where no subset in C is empty.

Definition 2.3. [13,36] Assume that C is a covering of the nonempty setU, so the structure ≺ U,C �
is a rough approximation structure based on covering.

Definition 2.4. [13, 36] Suppose that ≺ U,C � is covering rough approximation structure and let
01 ∈ U. Hence, the set family Md(01) is called the minimal description of 01, since Md(01) = {ω ∈

C : 01 ∈ ω ∧ (∀S ∈ C ∧ 01 ∈ S ∧ S ⊆ ω⇒ ω = S)}.

Definition 2.5. [37] Let F : A → P(U), so the structure 0G =≺ F ,A � is called a soft set onU. If⋃
e∈A F (e) = U, then the soft set is full soft set.

Definition 2.6. [38] Let 0G = (F ,A) be a soft set overU. The structure S = (U,0G) is called a soft
covering approximation structure (SCAS ) based on S.

Definition 2.7. [33] If S = (U,0G) is a soft covering approximation structure, then the soft
neighborhood of x ∈ U is defined as follows:
Ns(x) = ∩{F (e) : x ∈ F (e)}.

Definition 2.8. [33] If S is a soft covering approximation structure and A ∈ F (U), then the two
operators:
ℵ−0(A )(x) = ∧{A (y) : y ∈ Ns(x)},
ℵ+0(A )(x) = ∨{A (y) : y ∈ Ns(x)}, for all x ∈ U
are called the soft fuzzy covering lower (upper) approximation structure SFCLA − 0 (SFCUA − 0),
respectively.

Clearly, the set A is called a soft rough covering-based fuzzy set (SRCF −0) if ℵ−0(A ) , ℵ+0(A ).
Otherwise, the set A is definable.

During this research, we will express that ℵ−i(A ) (ℵ+i(A )) is the i type of SFCLA (SFCUA) as
SFCLA − i (SFCUA − i), and if ℵ−i(A ) , ℵ+i(A ), then the set A is called (SRCF − i). Otherwise,
the set A is definable.

3. A new model of SRFS s based on covering

In this section, we introduce new models of SRFS s based on covering by the core of soft
neighborhood. We present the properties of the new models along with some illustrative examples.

Definition 3.1. Consider that (U,0G) is a soft rough covering approximation structure (SRCAS )
where we fix the soft set 0G =≺ F ,A �, then ∀x ∈ U the core of the soft neighborhood is defined as
C N s(x) = {y ∈ U : Ns(x) = Ns(y)} .

Example 3.1. Consider that (U,0G) is a SRCAS whereU = {01,02,03,04,05,06}, C = {{01,02},

{01,02,03}, {01,02,04,05}, {03,04,05,06}, , {03,05,06}}, and 0G =≺ F ,A �is a soft set defined
in Table 1.
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Table 1. Tabular representation of the soft set 0G =≺ F ,A �.

U a1 a2 a3 a4 a5

01 1 1 1 0 0
02 1 1 1 0 0
03 0 1 0 1 1
04 0 0 1 1 0
05 0 0 1 1 1
06 0 0 0 1 1

From Table 1, the soft neighborhood and the core of the soft neighborhood are computed as follows:
Ns(01) = {01,02}, Ns(02) = {01,02}, Ns(03) = {03}, Ns(04) = {04,05}, Ns(05) = {05},Ns(06) =

{03,05,06}. Therefore, C N s(01) = {01,02},C N s(02) = {01,02}, C N s(03) = {03},C N s(04) =

{04},C N s(05) = {05},C N s(06) = {06}.

Definition 3.2. Assume that S = (U,0G) is SCAS and A1 ∈ F (U). The two operators:
ℵ−1(A1)(x) = ∧{A1(y) : y ∈ C N s(x)} for all x ∈ U} is called SFCLA − 1,
ℵ+1(A1)(x) = ∨{A1(y) : y ∈ C N s(x)}, for all x ∈ U} is called SFCUA − 1.

Clearly, the set A1 is called (SRCF − 1) if ℵ−1(A1) , ℵ+1(A1). Otherwise the set A1 is definable.

Example 3.2. If A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}. By using
Example 3.1, we get the following:
ℵ−0(A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.5)},
ℵ+0(A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.5), (05, 0.5), (06, 0.8)},
ℵ−1(A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
ℵ+1(A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}.
Obviously, ℵ−0(A1) ⊆ ℵ−1(A1) and ℵ+1(A1 ⊆ ℵ

+0(A1).

Theorem 3.1. Assume that S = (U,0G) is (SRCAS ) and A1,A2 ∈ F (U), then ∀01,02,03 ∈ U the
following properties are satisfied:

(iL) If A1 ⊆ A2, then ℵ−1(A1) ⊆ ℵ−1(A2);
(iH) If A1 ⊆ A2, then ℵ+1(A1) ⊆ ℵ+1(A2);
(iiL) ℵ−1(A1 ∩A2) = ℵ−1(A1) ∩ ℵ−1(A2);
(iiH) ℵ+1(A1 ∩A2) ⊆ ℵ+1(A1) ∩ ℵ+1(A2);
(iiiL) ℵ−1(A1) ∪ ℵ−1(A2) ⊆ ℵ−1(A1 ∪A2);
(iiiH) ℵ+1(A1) ∪ ℵ+1(A2) = ℵ+1(A1 ∪A2);
(ivL) ℵ−1(A c

1 ) = (ℵ+1(A1))c;
(ivH) ℵ+1(A c

1 ) = (ℵ−1(A1))c;
(vL) ℵ−1(A1) = ℵ−1(ℵ−1(A1));
(vH) ℵ+1(A1) = ℵ+1(ℵ+1(A1));

(viLH) ℵ−1(A1) ⊆ A1 ⊆ ℵ
+1(A1).

Proof. We will prove only iL, iiL, iiiL, ivL and ivL items. The proof of other items is similar:
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(iL) If A1 ⊆ A2 where A1,A2 ∈ F (U) and 01,02 ∈ U, hence, we get ℵ−1(A1)(01) = ∧{A1(02) :
02 ∈ C N s(01)} ≤ ∧{A2(02) : 02 ∈ C N s(01)} = ℵ−1(A2)(01);

(iiL) ℵ−1(A1 ∩ A2)(01) = ∧{(A1 ∩ A2)(02) : 02 ∈ C N s(01)} = ∧{A1(02) : 02 ∈ C N s(01)} ∩
∧{A2(02) : 02 ∈ C N s(01)} = ℵ−1(A1)(01) ∩ ℵ−1(A2)(01);

(iiiL) Since A1 ⊆ A1∪A2, A2 ⊆ A1∪A2, then ℵ−1(A1) ⊆ ℵ−1(A1∪A2) and ℵ−1(A2) ⊆ ℵ−1(A1∪A2).
Therefore, ℵ−1(A1) ∪ ℵ−1(A2) ⊆ ℵ−1(A1 ∪A2);

(ivL) ℵ−1(A c
1 ) = ∧{A c

1 (02) : 02 ∈ C N s(01)} = ∧{1 − A1(02) : 02 ∈ C N s(01)} = 1 − ∨{A1(02) :
02 ∈ C N s(01)} = (ℵ+1(A1))c;

(vL) ℵ−1(ℵ−1(A1))(01) = ∧{ℵ−1(A c
1 (02)) : 02 ∈ C N s(01)} = ∧{∧{A c

1 (03) : 03 ∈ (C N s(02))} :
02 ∈ C N s(01)} = ∧{A1(03) : 03 ∈ C N s(02) ∧ 02 ∈ C N s(01)} = ∧{A1(03) : 03 ∈

C N s(02) ⊆ C N s(01)} = ∧{A1(03) : 03 ∈ C N s(01)} = ℵ−1(A1)(01).

We define the first type of soft measure degree (SMD − 1) as follows.

Definition 3.3. Assume that S = (U,0G) is (SCAS ) and 01,02 ∈ U, then (SMD − 1) is defined as:

D1
s (01,02) =|

C N s(01)∩C N s(02)
C N s(01)∪C N s(02) |.

Clearly, 0 ≤ D1
s (01,02) ≤ 1, D1

s (01,02) = D1
s (02,01), and D1

s (01,01) = 1.

Example 3.3. Let us consider Example 3.1. The (SMD − 1) between each two elements 0i,0 j ∈

U, i, j = 1, 2, ..., 6 is calculated in Table 2.

Table 2. Tabular for D1
s (0i,0 j)∀i, j ∈ {1, 2, ..., 6}.

U 01 02 03 04 05 06

01 1 1 0 0 0 0
02 1 1 0 0 0 0
03 0 0 1 0 0 0
04 0 0 0 1 0 0
05 0 0 0 0 1 0
06 0 0 0 0 0 1

Based on Definition 3.3, we define the first type of S CRF based on λ-lower (upper) approximation
{λ − SFCLA − 1, (λ − SFCUA − 1)} as follows.

Definition 3.4. If S = (U,0G) is (SCAS ) and D1
s (01,02) is (SMD − 1) for 01,02 ∈ U, for A1 ∈

F (U), the λ − SFCLA − 1, (λ − SFCUA − 1) is defined as follows, respectively:
ℵ−1
λ (A1)(01) = ∧{A1)(02) : D1

s (01,02) > λ},
ℵ+1
λ (A1)(01) = ∨{A1)(02) : D1

s (01,02) > λ}, ∀01,02 ∈ U.

If ℵ−1
λ (A1) , ℵ+1

λ (A1), then A1 is called λ − SCRF − 1; otherwise A1 is called definable.

Example 3.4. Continued from Example 3.3 and A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2),
(05, 0.5), (06, 0.7)}, for λ = 0.5, we have the following approximations operators:
ℵ−1
λ (A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
ℵ+1
λ (A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}.
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Theorem 3.2. If S = (U,0G) is (SCAS ), then for A1, A2 ∈ F (U), the following properties hold:

(iL) If A1 ⊆ A2, then ℵ−1
λ (A1) ⊆ ℵ−1

λ (A2);
(iH) If A1 ⊆ A2, then ℵ+1

λ (A1) ⊆ ℵ+1
λ (A2);

(iiL) ℵ−1
λ (A1 ∩A2) = ℵ−1

λ (A1) ∩ ℵ−1
λ (A2);

(iiH) ℵ+1
λ (A1 ∩A2) ⊆ ℵ+1

λ (A1) ∩ ℵ+1
λ (A2);

(iiiL) ℵ−1
λ (A1) ∪ ℵ−1

λ (A2) ⊆ ℵ−1
λ (A1 ∪A2);

(iiiH) ℵ+1
λ (A1) ∪ ℵ+1

λ (A2) = ℵ+1
λ (A1 ∪A2);

(ivL) ℵ−1
λ (A c

1 ) = (ℵ+1
λ (A1))c;

(ivH) ℵ+1
λ (A c

1 ) = (ℵ−1
λ (A1))c;

(vL) If α1 ≤ α2, then ℵ−1
λ (A1) ⊆ ℵ−1

λ (ℵ−1
λ (A2));

(vH) If α1 ≤ α2, then ℵ+1
λ (A1) ⊆ ℵ+1

λ (ℵ+1
λ (A2));

(viLH) ℵ−1
λ (A1) ⊆ A1 ⊆ ℵ

+1
λ (A1).

Proof. Similar to Theorem 3.1.

Definition 3.5. If S = (U,0G) is (SCAS ) and D1
s (01,02) is (SMD − 1) for 01,02 ∈ U, then for

A1 ∈ F (U), the first type of SFC D-lower (upper) approximation (D−SFCLA−1) , (D−SFCUA−1)
is defined as follows, respectively:
ℵ−1

D (A1)(01) = ∧
02∈U
{(1 −D1

s )(01,02) ∨A1(02)},

ℵ+1
D (A1)(01) = ∨

02∈U
{D1

s (01,02) ∧A1(02)},∀01 ∈ U.

If ℵ−1
D (A1) , ℵ+1

D (A1), then A1 is called D − SCRF − 1; otherwise, A1 is called definable.

Example 3.5. Continued from Example 3.3 and A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2),
(05, 0.5), (06, 0.7)}, then we get the following approximations operators:
ℵ−1

D (A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
ℵ+1

D (A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}.

Theorem 3.3. Assume that S = (U,0G) is (SCAS ) and A1,A2 ∈ F (U), then ∀01,02,03 ∈ U, and
the following properties are satisfied:

(iL) If A1 ⊆ A2, then ℵ−1
D (A1) ⊆ ℵ−1

D (A2);
(iH) If A1 ⊆ A2, then ℵ+1

D (A1) ⊆ ℵ+1
D (A2);

(iiL) ℵ−1
D (A1 ∩A2) = ℵ−1

D (A1) ∩ ℵ−1
D (A2);

(iiH) ℵ+1(A1 ∩A2) ⊆ ℵ+1(A1) ∩ ℵ+1(A2);
(iiiL) ℵ−1

D (A1) ∪ ℵ−1
D (A2) ⊆ ℵ−1

D (A1 ∪A2);
(iiiH) ℵ+1

D (A1) ∪ ℵ+1
D (A2) = ℵ+1

D (A1 ∪A2);
(ivL) ℵ−1

D (A c
1 ) = (ℵ+1

D (A1))c;
(ivH) ℵ+1

D (A c
1 ) = (ℵ−1

D (A1))c;
(vL) ℵ−1

D (A1) = ℵ−1
D (ℵ−1

D (A1));
(vH) ℵ+1

D (A1) = ℵ+1
D (ℵ+1

D (A1));
(viLH) ℵ−1

D (A1) ⊆ A1 ⊆ ℵ
+1
D (A1).

Proof. Similar to Theorem 3.1.
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3.1. A simulation experiment for our model

Suppose that U = {01,02,03,04,05,06,07,08,09,010} is a set of pilots. They are trained with
respect to five attributes A = {e1, e2, e3, e4, e5}. They had been evaluated by an expert to determine
whether they are sufficiently well trained according to these attributes or not, as shown in Table 3.

Table 3. Tabular representation of the soft set 0G.

U e1 e2 e3 e4 e5

01 1 0 0 0 1
02 0 1 1 0 1
03 0 1 1 0 1
04 1 0 1 0 0
05 1 0 0 1 1
06 0 0 0 1 1
07 0 1 1 0 0
08 1 0 0 1 1
09 0 1 1 0 1
010 1 0 0 0 1

The core of soft neighborhood is: C N s(01) = C N s(010) = {01,010},C N s(02).
= C N s(03) = C N s(09) = {02,03,09}, C N s(04) = {04}, C N s(05) = C N s(08) = {05,08},

C N s(06) = {06}, C N s(07) = {07}.
Suppose A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7), (07, 0.9), (08, 0.3), (09, 0.9),
(010, 0.4)}
represents evaluation’s degrees which are given by the expert. We can check the accuracy of this
evaluation by our model which helps in decision making as follows:
ℵ−1(A1) = {(01, 0.1), (02, 0.3), (03, 0.3), (04, 0.2), (05, 0.3), (06, 0.7), (07, 0.9), (08, 0.3), (09, 0.9),
(010, 0.1)},
ℵ+1(A1) = {(01, 0.4), (02, 0.9), (03, 0.9), (04, 0.2), (05, 0.5), (06, 0.7), (07, 0.9), (08, 0.5), (09, 0.9),
(010, 0.4)}.

4. New other two models of SCRF based on neighborhoods

We introduce new two models of SCRF based on merging core soft neighborhoods and soft
neighborhoods. The second model of SCRF is denoted by SCRF − 2 and the third model is denoted
by SCRF − 3.

4.1. SCRF − 2-model

Definition 4.1. If S = (U,0G) is (SCAS ), then for A1 ∈ F (U)
ℵ−2(A1)(01) = ∧{A1(02) : 02 ∈ (Ns ∩ C N s)(01)}, ∀01,02 ∈ U is called SFCLA − 2,
ℵ+2(A1)(01) = ∨{A1(02) : 02 ∈ (Ns ∩ C N s)(01)}, ∀01,02 ∈ U is called SFCUA − 2.
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If ℵ−2(A1) , ℵ+1(A1), then A1 is called SCRF − 2; otherwise, A1 is called definable.

Example 4.1. Continued from Example 3.1, C N s(01) ∩Ns(01) = {01,02}, C N s(02) ∩Ns(02) =

{01,02}, C N s(03) ∩ Ns(03) = {03}, C N s(04) ∩ Ns(04) = {04}, C N s(05) ∩ Ns(05) =

{05}, C N s(06) ∩ Ns(06) = {06}, C N s(01) ∪ Ns(01) = {01,02},C N s(02) ∪ Ns(02) =

{01,02},C N s(03) ∪ Ns(03) = {03},C N s(04) ∪ Ns(04) = {04,05},C N s(05) ∪ Ns(05) = {05},
C N s(06) ∪Ns(06) = {03,05,06}. Therefore, ℵ−2(A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2),
(05, 0.5), (06, 0.7)}, and ℵ+2(A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}.

Let us define the second type of soft measure degree (SMD − 2) as follows.

Definition 4.2. Assume that S = (U,0G) is (SCAS ) and 01,02 ∈ U, then the (SMD − 2) is defined
as:

D2
s (01,02) =|

(C N s∩Ns)(01)∩(C N s∩Ns)(02)
(C N s∩Ns)(01)∪(C N s∩Ns)(02) |.

Clearly, 0 ≤ D2
s (01,02) ≤ 1, D2

s (01,02) = D2
s (02,01), and D1

s (01,01) = 1.

Example 4.2. According to Example 4.1, the values of SMD − 2 are shown in the following Table 4

Table 4. Tabular for D2
s (0i,0 j)∀i, j ∈ {1, 2, ..., 6}.

U 01 02 03 04 05 06

01 1 1 0 0 0 0
02 1 1 0 0 0 0
03 0 0 1 0 0 0
04 0 0 0 1 0 0
05 0 0 0 0 1 0
06 0 0 0 0 0 1

Based on Definition 4.1, we define the second type of S CRF based on λ-lower (upper)
approximation (λ − SFCLA − 2 (λ − SFCUA − 2) ) as follows.

Definition 4.3. If S = (U,0G) is (SCAS ) and D2
s (01,02) is (SMD − 2) for 01,02 ∈ U, then for

A1 ∈ F (U), the λ − SFCLA − 2 (λ − SFCUA − 2) is defined as follows, respectively:
ℵ−2
λ (A1)(01) = ∧{A1)(02) : D2

s (01,02) > λ},
ℵ+2
λ (A1)(01) = ∨{A1)(02) : D2

s (01,02) > λ}, ∀01,02 ∈ U.

If ℵ−2
λ (A1) , ℵ+2

λ (A1), then A1 is called λ − SCRF − 2; otherwise A1 is called definable.

Example 4.3. Consider Example 4.2 and A1 = {(01, 0.3), (02, 0.4), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
then for λ = 0.5, we have the following approximations operators:
ℵ−2
λ (A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
ℵ+2
λ (A1) = {(01, 0.4), (02, 0.4), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}.

Definition 4.4. If S = (U,0G) is (SCAS ) and D2
s (01,02) is (SMD − 2) for 01,02 ∈ U, then for

A1 ∈ F (U), the second type of SFC D-lower (upper) approximation D−SFCLA−2 (D−SFCUA−2)
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is defined as follows, respectively:
ℵ−2

D (A1)(01) = ∧
02∈U
{(1 −D2

s )(01,02) ∨A1(02)},

ℵ+2
D (A1)(01) = ∨

02∈U
{D2

s (01,02) ∧A1(02)},∀01 ∈ U.

Example 4.4. Consider Example 4.2 and A1 = {(01, 0.3), (02, 0.4), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
then we have the following approximations operators:
ℵ−2

D (A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}
ℵ+2

D (A1) = {(01, 0.4), (02, 0.4), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}.

4.2. SCRF − 3-model

Definition 4.5. If S = (U,0G) is (SCAS ), then for A1 ∈ F (U):
ℵ−3(A1)(01) = ∧{A1(02) : 02 ∈ (Ns ∪ C N s)(01)}, ∀01,02 ∈ U is called SFCLA − 3,
ℵ+3(A1)(01) = ∨{A1(02) : 02 ∈ (Ns ∪ C N s)(01)}, ∀01,02 ∈ U is called SFCUA − 3.

If ℵ−3
λ (A1) , ℵ+3

λ (A1), then A1 is called λ − SCRF − 3; otherwise, A1 is called definable.

Example 4.5. From Example 4.1 and A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2),
(05, 0.5), (06, 0.7)}, we have the following approximations operators:
ℵ−3(A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.5)},
ℵ−3(A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.5), (05, 0.5), (06, 0.8)}.

We define the third type of soft measure degree (SMD − 3) as follows.

Definition 4.6. Assume that S = (U,0G) is SCAS and 01,02 ∈ U, then the (SMD− 3) is defined as:

D3
s (01,02) =|

(C N s∪Ns)(01)∩(C N s∪Ns)(02)
(C N s∪Ns)(01)∪(C N s∪Ns)(02) |.

Clearly, 0 ≤ D3
s (01,02) ≤ 1, D3

s (01,02) = D3
s (02,01), and D3

s (01,01) = 1.

Example 4.6. From Example 4.1, the values of SMD − 3 are shown in the following Table 5.

Table 5. Tabular for D3
s (0i,0 j)∀i, j ∈ {1, 2, ..., 6}.

U 01 02 03 04 05 06

01 1 1 0 0 0 0
02 1 1 0 0 0 0
03 0 0 1 0 0 0
04 0 0 0 1 1

2
1
4

05 0 0 0 1
2 1 1

3
06 0 0 0 1

4
1
3 1

Based on Definition 4.6, we define the third type of SFC based on λ-lower(upper) approximation{
λ − SFCLA − 3(λ − SFCUA − 3)} as follows.

Definition 4.7. If S = (U,0G) is (SCAS ) and D3
s (01,02) is (SMD − 3) for 01,02 ∈ U, then for

A1 ∈ F (U), the { λ − SFCLA − 3(λ − SFCUA − 3)} is defined as:
ℵ−3
λ (A1)(01) = ∧{A1)(02) : D3

s (01,02) > λ},
ℵ+3
λ (A1)(01) = ∨{A1)(02) : D3

s (01,02) > λ}, ∀01,02 ∈ U.

AIMS Mathematics Volume 9, Issue 5, 11180–11193.



11190

If ℵ−3
λ (A1) , ℵ+3

λ (A1), then A1 is called λ − SCRF − 3; otherwise, A1 is called definable.

Example 4.7. From Example 4.6 and A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
then for λ = 0.2, we have the following approximations operators:
ℵ−2
λ (A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.2), (06, 0.2)},
ℵ+2
λ (A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.7), (05, 0.7), (06, 0.7)}.

Definition 4.8. If S = (U,0G) is (SCAS ) and D3
s (01,02) is (SMD−3) for 01,02 ∈ U, then for A1 ∈

F (U), the third type of SFC D-lower (upper) approximation ((D −SFCLA− 3), (D −SFCUA− 3))
is defined as follows, respectively:
ℵ−3

D (A1)(01) = ∧
02∈U
{(1 −D3

s )(01,02) ∨A1(02)},

ℵ+3
D (A1)(01) = ∨

02∈U
{D3

s (01,02) ∧A1(02)},∀01 ∈ U.

Example 4.8. Consider Example 4.6 and A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
then, we have the following approximations operators:
ℵ−3

D (A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)},
ℵ+3

D (A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.7), (05, 0.5), (06, 0.7)}.

4.3. Comparison between our SCRF-models and Zhan’s model

We set forth the relationship between our proposed SCRF-models and Zhan’s model for soft rough
fuzzy approximation structure.

Theorem 4.1. If S = (U,0G) is (SCAS ) and A1 ∈ F (U), then the following axioms are satisfied:

(iL) ℵ−3(A1) ⊆ ℵ−1(A1) ⊆ ℵ−2(A1);
(iH) ℵ−3(A1) ⊆ ℵ−0(A1) ⊆ ℵ−2(A1);
(iiL) ℵ+2(A1) ⊆ ℵ+1(A1) ⊆ ℵ+3(A1);
(iiH) ℵ+2(A1) ⊆ ℵ+0(A1) ⊆ ℵ+3(A1).

Proof. The proof comes from Definitions 3.2, 4.1, and 4.5.

Remark 4.1. From the previous theorem, the lower approximation of our model ℵ−2 is bigger than
Zhan’s model ℵ−0 while the upper approximation of our model ℵ+2 is less than Zhan’s model ℵ+0. This
leads to decreasing the boundary region and makes the soft rough fuzzy set more accurate in solving
the uncertainty issues.

Example 4.9. If A1 = {(01, 0.1), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}, then
by Example 3.1, ℵ−0(A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.5)},
ℵ+0(A1) = {(01, 0.3), (02, 0.3),
(03, 0.8), (04, 0.5), (05, 0.5), (06, 0.8)}. ℵ−2(A1) = {(01, 0.1), (02, 0.1), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}
and ℵ+2(A1) = {(01, 0.3), (02, 0.3), (03, 0.8), (04, 0.2), (05, 0.5), (06, 0.7)}.

Theorem 4.2. If S = (U,0G) is (SCAS ) and A1 ∈ F (U), then the following properties are satisfied:

(iL) ℵ−2(A1) = ℵ−0(A1) ∪ ℵ−1(A1);
(iH) ℵ+2(A1) = ℵ−0(A1) ∩ ℵ−1(A1);
(iiL) ℵ−3(A1) = ℵ−0(A1) ∩ ℵ−1(A1)
(iiH) ℵ+3(A1) = ℵ−0(A1) ∪ ℵ−1(A1).

Proof. The proof is straightforward.
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5. Conclusions

Zhan’s model for soft rough fuzzy covering stands as an innovative approach, though further
exploration and refinement are warranted. Similarly, the exploration of soft covering-based rough
fuzzy sets opens avenues for the integration of various mathematical structures. We introduced a
combination of soft sets, fuzzy sets and rough sets. Three models of the approximation ofSRFS - based
covering are presented. We deduced that our approximation is more refined than Zhan’s model as we
decreased the boundary region. The integration of soft sets with fuzzy logic in soft fuzzy covering and
the discernment of upper approximation provide additional layers to the SCRF framework, offering a
comprehensive solution to complex problem structures.
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