In numerous domains, fractional stochastic delay differential equations are used to model various physical phenomena, and the study of well-posedness ensures that the mathematical models accurately represent physical systems, allowing for meaningful predictions and analysis. A fractional stochastic differential equation is considered well-posed if its solution satisfies the existence, uniqueness, and continuous dependency properties. We established the well-posedness and regularity of solutions of conformable fractional stochastic delay differential equations (CFrSDDEs) of order $ \gamma\in(\frac{1}{2}, 1) $ in $ \mathbb{L}^{\mathrm{p}} $ spaces with $ \mathrm{p}\geq2 $, whose coefficients satisfied a standard Lipschitz condition. More specifically, we first demonstrated the existence and uniqueness of solutions; after that, we demonstrated the continuous dependency of solutions on both the initial values and fractional exponent $ \gamma $. The second section was devoted to examining the regularity of time. As a result, we found that, for each $ \Phi\in(0, \gamma-\frac{1}{2}) $, the solution to the considered problem has a $ \Phi- $H$ \ddot o $lder continuous version. Lastly, two examples that highlighted our findings were provided. The two main elements of the proof were the Burkholder-Davis-Gundy inequality and the weighted norm.
Citation: Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty. Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives[J]. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549
In numerous domains, fractional stochastic delay differential equations are used to model various physical phenomena, and the study of well-posedness ensures that the mathematical models accurately represent physical systems, allowing for meaningful predictions and analysis. A fractional stochastic differential equation is considered well-posed if its solution satisfies the existence, uniqueness, and continuous dependency properties. We established the well-posedness and regularity of solutions of conformable fractional stochastic delay differential equations (CFrSDDEs) of order $ \gamma\in(\frac{1}{2}, 1) $ in $ \mathbb{L}^{\mathrm{p}} $ spaces with $ \mathrm{p}\geq2 $, whose coefficients satisfied a standard Lipschitz condition. More specifically, we first demonstrated the existence and uniqueness of solutions; after that, we demonstrated the continuous dependency of solutions on both the initial values and fractional exponent $ \gamma $. The second section was devoted to examining the regularity of time. As a result, we found that, for each $ \Phi\in(0, \gamma-\frac{1}{2}) $, the solution to the considered problem has a $ \Phi- $H$ \ddot o $lder continuous version. Lastly, two examples that highlighted our findings were provided. The two main elements of the proof were the Burkholder-Davis-Gundy inequality and the weighted norm.
[1] | A. Jajarmi, D. Baleanu, S. S. Sajjadi, J. J. Nieto, Analysis and some applications of a regularized $\psi$-Hilfer fractional derivative, J. Comput. Appl. Math., 415 (2022), 114476. https://doi.org/10.1016/j.cam.2022.114476 doi: 10.1016/j.cam.2022.114476 |
[2] | M. I. Liaqat, A. Akgül, M. De la Sen, M. Bayram, Approximate and exact solutions in the sense of conformable derivatives of quantum mechanics models using a novel algorithm, Symmetry, 15 (2023), 744. https://doi.org/10.3390/sym15030744 doi: 10.3390/sym15030744 |
[3] | W. Chen, H. Sun, X. Li, Fractional derivative modeling in mechanics and engineering, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-8802-7 |
[4] | M. I. Liaqat, A. Akgül, M. Bayram, Series and closed form solution of Caputo time-fractional wave and heat problems with the variable coefficients by a novel approach, Opt. Quant. Electron., 56 (2024), 203. https://doi.org/10.1007/s11082-023-05751-3 doi: 10.1007/s11082-023-05751-3 |
[5] | H. M. Srivastava, Fractional-order derivatives and integrals: Introductory overview and recent developments, Kyungpook Math. J., 60 (2020), 73–116. https://doi.org/10.5666/KMJ.2020.60.1.73 doi: 10.5666/KMJ.2020.60.1.73 |
[6] | S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, Adv. Differ. Equ., 2021 (2021), 20. https://doi.org/10.1186/s13662-020-03177-9 doi: 10.1186/s13662-020-03177-9 |
[7] | M. I. Liaqat, S. Etemad, S. Rezapour, C. Park, A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Mathematics, 7 (2022), 16917–16948. https://doi.org/10.3934/math.2022929 doi: 10.3934/math.2022929 |
[8] | M. I. Liaqat, A. Khan, M. A. Alam, M. K. Pandit, A highly accurate technique to obtain exact solutions to time-fractional quantum mechanics problems with zero and nonzero trapping potential, J. Math., 2022 (2022), 9999070. https://doi.org/10.1155/2022/9999070 doi: 10.1155/2022/9999070 |
[9] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[10] | A. Khan, M. I. Liaqat, M. A. Alqudah, T. Abdeljawad, Analysis of the conformable temporal-fractional Swift-Hohenberg equation using a novel computational technique, Fractals, 31 (2023), 2340050. http://dx.doi.org/10.1142/S0218348X23400509 doi: 10.1142/S0218348X23400509 |
[11] | W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, Comput. Appl. Math., 290 (2015), 150–158. https://doi.org/10.1016/j.cam.2015.04.049 doi: 10.1016/j.cam.2015.04.049 |
[12] | A. Ortega, J. J. Rosales, Newton's law of cooling with fractional conformable derivative, Rev. Mex. Fis., 64 (2018), 172–175. https://doi.org/10.31349/RevMexFis.64.172 doi: 10.31349/RevMexFis.64.172 |
[13] | A. A. Abdelhakim, J. A. T. Machado, A critical analysis of the conformable derivative, Nonlinear Dyn., 95 (2019), 3063–3073. https://doi.org/10.1007/s11071-018-04741-5 doi: 10.1007/s11071-018-04741-5 |
[14] | M. I. Liaqat, E. Okyere, The fractional series solutions for the conformable time-fractional Swift-Hohenberg equation through the conformable Shehu Daftardar-Jafari approach with comparative analysis, J. Math., 2022 (2022), 3295076. https://doi.org/10.1155/2022/3295076 doi: 10.1155/2022/3295076 |
[15] | X. Ma, W. Wu, B. Zeng, Y. Wang, X. Wu, The conformable fractional grey system model, ISA Trans., 96 (2020), 255–271. https://doi.org/10.1016/j.isatra.2019.07.009 doi: 10.1016/j.isatra.2019.07.009 |
[16] | M. A. Hammad, R. Khalil, Conformable fractional heat differential equation, Int. J. Pure Appl. Math., 94 (2014), 215–221. http://dx.doi.org/10.12732/ijpam.v94i2.8 doi: 10.12732/ijpam.v94i2.8 |
[17] | M. Pospíšil, L. P. Škripková, Sturm's theorems for conformable fractional differential equations, Math. Commun., 21 (2016), 273–281. |
[18] | M. M. Khater, M. S. Mohamed, H. Alotaibi, M. A. El-Shorbagy, S. H. Alfalqi, J. F. Alzaidi, et al., Novel explicit breath wave and numerical solutions of an Atangana conformable fractional Lotka-Volterra model, Alex. Eng. J., 60 (2021), 4735–4743. https://doi.org/10.1016/j.aej.2021.03.051 doi: 10.1016/j.aej.2021.03.051 |
[19] | M. Li, J. Wang, D. O'regan, Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 42 (2019), 1791–1812. https://doi.org/10.1007/s40840-017-0576-7 doi: 10.1007/s40840-017-0576-7 |
[20] | S. Wang, W. Jiang, J. Sheng, R. Li, Ulam's stability for some linear conformable fractional differential equations, Adv. Differ. Equ., 2020 (2020), 251. https://doi.org/10.1186/s13662-020-02672-3 doi: 10.1186/s13662-020-02672-3 |
[21] | M. I. Liaqat, A. Khan, M. A. Alqudah, T. Abdeljawad, Adapted homotopy perturbation method with Shehu transform for solving conformable fractional nonlinear partial differential equations, Fractals, 31 (2023), 2340027. https://doi.org/10.1142/S0218348X23400273 doi: 10.1142/S0218348X23400273 |
[22] | D. Zhao, X. Pan, M. Luo, A new framework for multivariate general conformable fractional calculus and potential applications, Physica A, 510 (2018), 271–280. https://doi.org/10.1016/j.physa.2018.06.070 doi: 10.1016/j.physa.2018.06.070 |
[23] | N. Samadyar, Y. Ordokhani, F. Mirzaee, Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105346. https://doi.org/10.1016/j.cnsns.2020.105346 doi: 10.1016/j.cnsns.2020.105346 |
[24] | S. Soradi-Zeid, H. Jahanshahi, A. Yousefpour, S. Bekiros, King algorithm: A novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems, Chaos Soliton Fract., 132 (2020), 109569. https://doi.org/10.1016/j.chaos.2019.109569 doi: 10.1016/j.chaos.2019.109569 |
[25] | J. C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: Modeling, method and analysis, Chaos Soliton Fract., 45 (2012), 279–293. https://doi.org/10.1016/j.chaos.2011.12.009 doi: 10.1016/j.chaos.2011.12.009 |
[26] | L. He, S. Banihashemi, H. Jafari, A. Babaei, Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme, Chaos Soliton Fract., 149 (2021), 111018. https://doi.org/10.1016/j.chaos.2021.111018 doi: 10.1016/j.chaos.2021.111018 |
[27] | L. C. Evans, An introduction to stochastic differential equations, American Mathematical Society, 2012. |
[28] | X. Han, P. E. Kloeden, Random ordinary differential equations and their numerical solution, Singapore: Springer, 2017. http://dx.doi.org/10.1007/978-981-10-6265-0 |
[29] | X. Wang, S. Gan, D. Wang, $\theta$-Maruyama methods for nonlinear stochastic differential delay equations, Appl. Numer. Math., 98 (2015), 38–58. https://doi.org/10.1016/j.apnum.2015.08.004 doi: 10.1016/j.apnum.2015.08.004 |
[30] | R. Sipahi, S. I. Niculescu, A survey of deterministic time delay traffic flow models, IFAC Proc. Vol., 40 (2007), 111–116. https://doi.org/10.1016/S1474-6670(17)69272-3 doi: 10.1016/S1474-6670(17)69272-3 |
[31] | D. Chowdhury, L. Santen, A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep., 329 (2000), 199–329. https://doi.org/10.1016/S0370-1573(99)00117-9 doi: 10.1016/S0370-1573(99)00117-9 |