Research article Special Issues

Sustainable practices to reduce environmental impact of industry using interaction aggregation operators under interval-valued Pythagorean fuzzy hypersoft set

  • Received: 27 February 2023 Revised: 08 April 2023 Accepted: 11 April 2023 Published: 20 April 2023
  • MSC : 03E72, 68T35, 90B50

  • Optimization techniques can be used to find the optimal combination of inputs and parameters and help identify the most efficient solution. Aggregation operators (AOs) play a prominent role in discernment between two circulations of prospect and pull out anxieties from that insight. The most fundamental objective of this research is to extend the interaction AOs to the interval-valued Pythagorean fuzzy hypersoft set (IVPFHSS), the comprehensive system of the interval-valued Pythagorean fuzzy soft set (IVPFSS). The IVPFHSS adroitly contracts with defective and ambagious facts compared to the prevalent Pythagorean fuzzy soft set and interval-valued intuitionistic fuzzy hypersoft set (IVIFHSS). It is the dominant technique for enlarging imprecise information in decision-making (DM). The most important intention of this exploration is to intend interactional operational laws for IVPFHSNs. We extend the AOs to interaction AOs under IVPFHSS setting such as interval-valued Pythagorean fuzzy hypersoft interactive weighted average (IVPFHSIWA) and interval-valued Pythagorean fuzzy hypersoft interactive weighted geometric (IVPFHSIWG) operators. Also, we study the significant properties of the proposed operators, such as Idempotency, Boundedness, and Homogeneity. Still, the prevalent multi-criteria group decision-making (MCGDM) approaches consistently carry irreconcilable consequences. Meanwhile, our proposed MCGDM model is deliberate to accommodate these shortcomings. By utilizing a developed mathematical model and optimization technique, Industry 5.0 can achieve digital green innovation, enabling the development of sustainable processes that significantly decrease environmental impact. The impacts show that the intentional model is more operative and consistent in conducting inaccurate data based on IVPFHSS.

    Citation: Nadia Khan, Sehrish Ayaz, Imran Siddique, Hijaz Ahmad, Sameh Askar, Rana Muhammad Zulqarnain. Sustainable practices to reduce environmental impact of industry using interaction aggregation operators under interval-valued Pythagorean fuzzy hypersoft set[J]. AIMS Mathematics, 2023, 8(6): 14644-14683. doi: 10.3934/math.2023750

    Related Papers:

  • Optimization techniques can be used to find the optimal combination of inputs and parameters and help identify the most efficient solution. Aggregation operators (AOs) play a prominent role in discernment between two circulations of prospect and pull out anxieties from that insight. The most fundamental objective of this research is to extend the interaction AOs to the interval-valued Pythagorean fuzzy hypersoft set (IVPFHSS), the comprehensive system of the interval-valued Pythagorean fuzzy soft set (IVPFSS). The IVPFHSS adroitly contracts with defective and ambagious facts compared to the prevalent Pythagorean fuzzy soft set and interval-valued intuitionistic fuzzy hypersoft set (IVIFHSS). It is the dominant technique for enlarging imprecise information in decision-making (DM). The most important intention of this exploration is to intend interactional operational laws for IVPFHSNs. We extend the AOs to interaction AOs under IVPFHSS setting such as interval-valued Pythagorean fuzzy hypersoft interactive weighted average (IVPFHSIWA) and interval-valued Pythagorean fuzzy hypersoft interactive weighted geometric (IVPFHSIWG) operators. Also, we study the significant properties of the proposed operators, such as Idempotency, Boundedness, and Homogeneity. Still, the prevalent multi-criteria group decision-making (MCGDM) approaches consistently carry irreconcilable consequences. Meanwhile, our proposed MCGDM model is deliberate to accommodate these shortcomings. By utilizing a developed mathematical model and optimization technique, Industry 5.0 can achieve digital green innovation, enabling the development of sustainable processes that significantly decrease environmental impact. The impacts show that the intentional model is more operative and consistent in conducting inaccurate data based on IVPFHSS.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] F. Xiao, CaFtR: A fuzzy complex event processing method, Int. J. Fuzzy Syst., 24 (2022), 1098–1111. https://doi.org/10.1007/s40815-021-01118-6 doi: 10.1007/s40815-021-01118-6
    [3] I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Set. Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
    [4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set.. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [5] W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
    [6] F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man Cy.-S., 51 (2019), 3980–3992. https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
    [7] K. T. Atanassov, Interval-valued intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Physica, Heidelberg, 35 (1999). https://doi.org/10.1007/978-3-7908-1870-3_2
    [8] F. Xiao, EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE T. Fuzzy Syst., 28 (2019), 1477–1491. https://doi.org/10.1109/TFUZZ.2019.2936368 doi: 10.1109/TFUZZ.2019.2936368
    [9] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [10] M. J. Khan, M. I. Ali, P. Kumam, W. Kumam, M. Aslam, J. C. R. Alcantud, Improved generalized dissimilarity measure‐based VIKOR method for Pythagorean fuzzy sets, Int. J. Intell. Syst., 37 (2022), 1807–1845. https://doi.org/10.1002/int.22757 doi: 10.1002/int.22757
    [11] K. Rahman, S. Abdullah, R. Ahmed, M. Ullah, Pythagorean fuzzy Einstein weighted geometric aggregation operator and their application to multiple attribute group decision making, J. Intell. Fuzzy Syst., 33 (2017), 635–647. https://doi.org/10.3233/JIFS-16797 doi: 10.3233/JIFS-16797
    [12] C. Huang, M. Lin, Z. Xu, Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: Its application in multicriteria decision making process, Knowl. Inform. Syst., 62 (2020), 4373–4406. https://doi.org/10.1007/s10115-020-01491-y doi: 10.1007/s10115-020-01491-y
    [13] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [14] M. Lin, C. Huang, R. Chen, H. Fujita, X. Wang, Directional correlation coefficient measures for Pythagorean fuzzy sets: Their applications to medical diagnosis and cluster analysis, Complex Intell. Syst., 7 (2021), 1025–1043. https://doi.org/10.1007/s40747-020-00261-1 doi: 10.1007/s40747-020-00261-1
    [15] G. Wei, M. Lu, Pythagorean fuzzy power aggregation operators in multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 169–186. https://doi.org/10.1002/int.21946 doi: 10.1002/int.21946
    [16] M. Akram, K. Zahid, J.C. R. Alcantud, A new outranking method for multicriteria decision making with complex Pythagorean fuzzy information, Neural Comput. Appl., 34 (2022), 8069–8102. https://doi.org/10.1007/s00521-021-06847-1 doi: 10.1007/s00521-021-06847-1
    [17] F. Xiao, W. Ding, Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis, Appl. Soft Comput., 79 (2019), 254–267. https://doi.org/10.1016/j.asoc.2019.03.043 doi: 10.1016/j.asoc.2019.03.043
    [18] L. Wang, N. Li, Pythagorean fuzzy interaction power Bonferroni means aggregation operators in multiple attribute decision making, Int. J. Intell. Syst., 35 (2020), 150–183. https://doi.org/10.1002/int.22204 doi: 10.1002/int.22204
    [19] M. Lin, J. Wei, Z. Xu, R. Chen, Multiattribute group decision-making based on linguistic Pythagorean fuzzy interaction partitioned bonferroni mean aggregation operators, Complexity, 2018 (2018). https://doi.org/10.1155/2018/9531064 doi: 10.1155/2018/9531064
    [20] M. R. Khan, K. Ullah, Q. Khan, Multi-attribute decision-making using Archimedean aggregation operator in T-spherical fuzzy environment, Rep. Mech. Eng., 4 (2023), 18–38. https://doi.org/10.31181/rme20031012023k doi: 10.31181/rme20031012023k
    [21] M. Akram, F. Wasim, J. C. R. Alcantud, A. N. Al-Kenani, Multi-criteria optimization technique with complex Pythagorean fuzzy n-soft information, Int. J. Comput. Intell. Syst., 14 (2021), 1–24. https://doi.org/10.1007/s44196-021-00008-x doi: 10.1007/s44196-021-00008-x
    [22] X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, Int. J. Intell. Syst., 31 (2016), 593–611. https://doi.org/10.1002/int.21796 doi: 10.1002/int.21796
    [23] M. Riaz, H. M. A. Farid, Picture fuzzy aggregation approach with application to third-party logistic provider selection process, Rep. Mech. Eng., 3 (2022), 227–236. https://doi.org/10.31181/rme20023062022r doi: 10.31181/rme20023062022r
    [24] M. Lin, X. Li, R. Chen, H. Fujita, J. Lin, Picture fuzzy interactional partitioned Heronian mean aggregation operators: an application to MADM process, Artif. Intell. Rev., 55 (2022), 1171–1208. https://doi.org/10.1007/s10462-021-09953-7 doi: 10.1007/s10462-021-09953-7
    [25] X. Peng, Y. Yang, Fundamental properties of interval‐valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444–487. https://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
    [26] M. Lin, C. Huang, Z. Xu, R. Chen, Evaluating IoT platforms using integrated probabilistic linguistic MCDM method, IEEE Internet Things, 7 (2020), 11195–11208. https://doi.org/10.1109/JIOT.2020.2997133 doi: 10.1109/JIOT.2020.2997133
    [27] K. Rahman, S. Abdullah, M. Shakeel, M. S. Ali Khan, M. Ullah, Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem, Cogent Math., 4 (2017), 1338638. https://doi.org/10.1080/23311835.2017.1338638 doi: 10.1080/23311835.2017.1338638
    [28] M. Lin, X. Li, L. Chen, Linguistic q‐rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators, Int. J. Intell. Syst., 35 (2020), 217–249. https://doi.org/10.1002/int.22136 doi: 10.1002/int.22136
    [29] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [30] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [31] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602.
    [32] P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic fuzzy soft sets, J. Fuzzy Math., 9 (2001), 677–692.
    [33] R. Arora, H. Garg, A robust aggregation operators for multi-criteria decision-making with intuitionistic fuzzy soft set environment, Sci. Iran., 25 (2018), 931–942.
    [34] A. K. Das, FP-intuitionistic multi fuzzy N-soft set and its induced FP-hesitant N soft set in decision-making, Decis. Mak. Appl. Manag. Eng., 5 (2022), 67–89. https://doi.org/10.31181/dmame181221045d doi: 10.31181/dmame181221045d
    [35] Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy soft sets and their properties, Comput. Math. Appl., 60 (2010), 906–918. https://doi.org/10.1016/j.camwa.2010.05.036 doi: 10.1016/j.camwa.2010.05.036
    [36] R. M. Zulqarnain, X. L. Xin, M. Saqlain, W. A. Khan, TOPSIS method based on the correlation coefficient of interval-valued intuitionistic fuzzy soft sets and aggregation operators with their application in decision-making, J. Math., 2021 (2021), 1–16. https://doi.org/10.1155/2021/6656858 doi: 10.1155/2021/6656858
    [37] X. D. Peng, Y. Yang, J. Song, Y. Jiang, Pythagorean fuzzy soft set and its application, Comput. Eng., 41 (2015), 224–229.
    [38] R. M. Zulqarnain, I. Siddique, A. Iampan, D. Baleanu, Aggregation operators for interval-valued Pythagorean fuzzy soft set with their application to solve multi-attribute group decision making problem, CMES-Comput. Model. Eng. Sci., 131 (2022), 1717–1750. https://doi.org/10.32604/cmes.2022.019408 doi: 10.32604/cmes.2022.019408
    [39] F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets Sy., 22 (2018), 168–170.
    [40] A. U. Rahman, M. Saeed, H. A. E. W. Khalifa, W. A. Afifi, Decision making algorithmic techniques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft sets, AIMS Math., 7 (2022), 3866–3895. https://doi.org/10.3934/math.2022214 doi: 10.3934/math.2022214
    [41] A. U. Rahman, M. Saeed, S. S. Alodhaibi, H. Abd, Decision making algorithmic approaches based on parameterization of neutrosophic set under hypersoft set environment with fuzzy, intuitionistic fuzzy and neutrosophic settings, CMES-Comput. Model. Eng. Sci., 12 (2021), 743–777. https://doi.org/10.32604/cmes.2021.016736 doi: 10.32604/cmes.2021.016736
    [42] M. Saeed, M. Ahsan, A. U. Rahman, M. H. Saeed, A. Mehmood, An application of neutrosophic hypersoft mapping to diagnose brain tumor and propose appropriate treatment, J. Intell. Fuzzy Syst., 41 (2021), 1677–1699. https://doi.org/10.3233/JIFS-210482 doi: 10.3233/JIFS-210482
    [43] R. M. Zulqarnain, I. Siddique, R. Ali, D. Pamucar, D. Marinkovic, D. Bozanic, Robust aggregation operators for intuitionistic fuzzy hypersoft set with their application to solve MCDM problem, Entropy, 23 (2021), 688. https://doi.org/10.3390/e23060688 doi: 10.3390/e23060688
    [44] R. M. Zulqarnain, X. L. Xin, M. Saeed, A development of Pythagorean fuzzy hypersoft set with basic operations and decision-making approach based on the correlation coefficient, In: Theory and Application of Hypersoft Set, Pons Publishing House Brussels., 2021 (2021), 85–106.
    [45] R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Aggregation operators for interval-valued Pythagorean fuzzy hypersoft set with their application to solve MCDM problem, CMES-Comput. Model. Eng. Sci., 135 (2022), 619–651. https://doi.org/10.32604/cmes.2022.022767 doi: 10.32604/cmes.2022.022767
    [46] K. Chatterjee, D. Pamucar, E. K. Zavadskas, Evaluating the performance of suppliers based on using the R'AMATELMAIRCA method for green supply chain implementation in electronics industry, J. Clean. Prod., 184 (2018), 101–129. https://doi.org/10.1016/j.jclepro.2018.02.186 doi: 10.1016/j.jclepro.2018.02.186
    [47] Z. Stevic, D. Pamucar, M. Vasiljevic, G. Stojic, S. Korica, Novel integrated multicriteria model for supplier selection: Case study construction company, Symmetry, 9 (2017), 279. https://doi.org/10.3390/sym9110279 doi: 10.3390/sym9110279
    [48] G. Stojic, Z. Stevic, J. Antucheviciene, D. Pamucar, M. Vasiljevic, A novel rough WASPAS approach for supplier selection in a company manufacturing PVC carpentry products, Information, 9 (2018), 121. https://doi.org/10.3390/info9050121 doi: 10.3390/info9050121
    [49] Z. Stevic, D. Pamucar, A. Puska, P. Chatterjee, Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS), Comput. Ind. Eng., 140 (2020), 106231. https://doi.org/10.1016/j.cie.2019.106231 doi: 10.1016/j.cie.2019.106231
    [50] W. Wang, X. Liu, Y. Qin, Interval-valued intuitionistic fuzzy aggregation operators, J. Syst. Eng. Electron., 23 (2012), 574–580. https://doi.org/10.1109/JSEE.2012.00071 doi: 10.1109/JSEE.2012.00071
    [51] Z. Xu, J. Chen, On geometric aggregation over interval-valued intuitionistic fuzzy information, In: Fourth international conference on fuzzy systems and knowledge discovery (FSKD 2007), Haikou, China, 2007,466–471. https://doi.org/10.1109/FSKD.2007.427
    [52] S. Khan, H. F. Ashraf, Analysis of Pakistan's electric power sector, In: Blekinge Institute of Technology, Department of Electrical Engineering, 2015. Available from: https://www.diva-portal.org/smash/get/diva2: 917526/FULLTEXT01.pdf.
    [53] D. Anderson, F. Britt, D. Favre, The seven principles of supply chain management, Supply Chain Manag. Rev., 1 (1997), 21–31.
    [54] X. Y. Deng, Y. Hu, Y. Deng, S. Mahadevan, Supplier selection using AHP methodology extended by D numbers, Expert Syst. Appl., 41 (2014), 156–167. https://doi.org/10.1016/j.eswa.2013.07.018 doi: 10.1016/j.eswa.2013.07.018
    [55] G. W. Dickson, An analysis of vendor selection: Aystems and decisions, J. Purch., 1 (1966), 5–17. https://doi.org/10.1111/j.1745-493X.1966.tb00818.x doi: 10.1111/j.1745-493X.1966.tb00818.x
    [56] Y. Wind, P. E. Green, P. J. Robinson, The determinants of vendor selection: The evaluation function approach, J. Purch., 8 (1968), 29–41. https://doi.org/10.1111/j.1745-493X.1968.tb00592.x doi: 10.1111/j.1745-493X.1968.tb00592.x
    [57] W. Ho, X. Xu, P. K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: A literature review, Eur. J.. Oper. Res., 202 (2010), 16–24. https://doi.org/10.1016/j.ejor.2009.05.009 doi: 10.1016/j.ejor.2009.05.009
    [58] C. A. Weber, J. R. Current, W. C. Benton, Vendor selection criteria and methods, Eur. J.. Oper. Res., 50 (1991), 2–18. https://doi.org/10.1016/0377-2217(91)90033-R doi: 10.1016/0377-2217(91)90033-R
    [59] A. Amid, S. H. Ghodsypour, C. Brien, A weighted max-min model for fuzzy multiobjective supplier selection in a supply chain, Int. J. Prod. Econ., 131 (2011), 139–145. https://doi.org/10.1016/j.ijpe.2010.04.044 doi: 10.1016/j.ijpe.2010.04.044
    [60] F. Jolai, S. A. Yazdian, K. Shahanaghi, M. A. Khojasteh, Integrating fuzzy TOPSIS and multiperiod goal programming for purchasing multiple products from multiple suppliers, J. Purch. Supply Manag., 17 (2011), 42–53. https://doi.org/10.1016/j.pursup.2010.06.004 doi: 10.1016/j.pursup.2010.06.004
    [61] M. Sevkli, S. C. L. Koh, S. Zaim, M. Demirbag, E. Tatoglu, Hybrid analytical hierarchy process model for supplier selection, Ind. Manage. Data Syst., 108 (2008), 122–142. https://doi.org/10.1108/02635570810844124 doi: 10.1108/02635570810844124
    [62] A. Anastasiadis, S. Konstantinopoulos, G. Kondylis, G. A. Vokas, M. J. Salame, Carbon tax, system marginal price and environmental policies on smart microgrid operation, Manag. Environ. Qual., 29 (2018), 76–88. https://doi.org/10.1108/MEQ-11-2016-0086 doi: 10.1108/MEQ-11-2016-0086
    [63] K. Govindan, R. Sivakumar, Green supplier selection and order allocation in a low-carbon paper industry: Integrated multi-criteria heterogeneous decision-making and multiobjective linear programming approaches, Ann. Oper. Res., 238 (2016), 243–276. https://doi.org/10.1007/s10479-015-2004-4 doi: 10.1007/s10479-015-2004-4
    [64] J. D. Qin, X. W. Liu, W. Pedrycz, An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment, Eur. J. Oper. Res., 258 (2017), 626–638. https://doi.org/10.1016/j.ejor.2016.09.059 doi: 10.1016/j.ejor.2016.09.059
    [65] M. Davood, H. G. Seyed, H. Ashkan, A game theoretic analysis in capacity-constrained supplier selection and cooperation by considering the total supply chain inventory costs, Int. J. Prod. Econ., 181 (2016), 87–97. https://doi.org/10.1016/j.ijpe.2015.11.016 doi: 10.1016/j.ijpe.2015.11.016
    [66] X. Tong, Z. J. Wang, A group decision framework with intuitionistic preference relations and its application to low carbon supplier selection, Int. J. Environ. Res. Pub. He., 13 (2016), 923. https://doi.org/10.3390/ijerph13090923 doi: 10.3390/ijerph13090923
    [67] S. Zeng, X. Peng, T. Baležentis, D. Streimikiene, Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level, Econ. Res.-Ekon. Istraaz., 32 (2019), 1073–1087. https://doi.org/10.1080/1331677X.2019.1615971 doi: 10.1080/1331677X.2019.1615971
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1255) PDF downloads(38) Cited by(6)

Article outline

Figures and Tables

Figures(4)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog