Research article Special Issues

Delay-dependent anti-disturbance control of electric vehicle based on collective observers

  • Received: 11 February 2023 Revised: 27 March 2023 Accepted: 30 March 2023 Published: 20 April 2023
  • An improved anti-disturbance strategy is proposed to guarantee lateral stability for electric vehicles with external disturbance and input time delay. Firstly, the T-S fuzzy model is applied to describe active front wheel steering system (AFS). Based on the obtained model, a new collective observers including disturbance observer and state observer are structured to estimate disturbance and state simultaneously. Then, a compound control is designed by using the estimation values of collective observers. During the design process, a novel path-independent fuzzy Lyapunov-Krasovskii function (FLKF) and slack variable matrices are introduced to reduce conservatism. Finally, two simulation cases are implemented on Matlab/Simulink-Carsim to show the effectiveness of the proposed method.

    Citation: Zigui Kang, Tao Li, Xiaofei Fan. Delay-dependent anti-disturbance control of electric vehicle based on collective observers[J]. AIMS Mathematics, 2023, 8(6): 14684-14703. doi: 10.3934/math.2023751

    Related Papers:

  • An improved anti-disturbance strategy is proposed to guarantee lateral stability for electric vehicles with external disturbance and input time delay. Firstly, the T-S fuzzy model is applied to describe active front wheel steering system (AFS). Based on the obtained model, a new collective observers including disturbance observer and state observer are structured to estimate disturbance and state simultaneously. Then, a compound control is designed by using the estimation values of collective observers. During the design process, a novel path-independent fuzzy Lyapunov-Krasovskii function (FLKF) and slack variable matrices are introduced to reduce conservatism. Finally, two simulation cases are implemented on Matlab/Simulink-Carsim to show the effectiveness of the proposed method.



    加载中


    [1] L. Li, D. Wen, N. N. Zhang, L. C. Shen, Cognitive cars: A new frontier for ADAS research, IEEE Trans. Intell. Transp. Syst., 13 (2011), 395–407. http://doi.org/10.1109/TITS.2011.2159493 doi: 10.1109/TITS.2011.2159493
    [2] B. Lenzo, M. Zanchetta, A. Sorniotti, P. Gruber, W. D. Nijs, Yaw rate and sideslip angle control through single input single output direct yaw moment control, IEEE Trans. Control. Syst. Technol., 29 (2020), 124–139. http://doi.org/10.1109/TCST.2019.2949539 doi: 10.1109/TCST.2019.2949539
    [3] J. Liu, Q. Dai, H. Guo, J. Z. Guo, H. Chen, Human-oriented online driving authority optimization for driver-automation shared steering control, IEEE Trans. Intell. Veh., 7 (2022), 863–872. http://doi.org/10.1109/TIV.2022.3165931 doi: 10.1109/TIV.2022.3165931
    [4] H. E. Aiss, K. A. Barbosa, A. A. Peters, Nonlinear Time-Delay Observer-Based Control to Estimate Vehicle States: Lateral Vehicle Model, IEEE Access, 10 (2022), 110459–110472. http://doi.org/10.1109/ACCESS.2022.3210566 doi: 10.1109/ACCESS.2022.3210566
    [5] C. A. Lúa, S. D. Gennaro, Nonlinear adaptive tracking for ground vehicles in the presence of lateral wind disturbance and parameter variations, J. Franklin Inst., 354 (2017), 2742–2768. http://doi.org/10.1016/j.jfranklin.2017.01.020 doi: 10.1016/j.jfranklin.2017.01.020
    [6] Q. Meng, T. Zhao, C. Qian, Z. Sun, P. Ge, Integrated stability control of AFS and DYC for electric vehicle based on non-smooth control, Int. J. Syst. Sci., 10 (2018), 1518–1528. https://doi.org/10.1080/00207721.2018.1460410 doi: 10.1080/00207721.2018.1460410
    [7] F. Yakub, Y. Mori, Enhancing path following control performance of autonomous ground vehicle through coordinated approach under disturbance effect, IEEJ Trans. Electron. Inf. Syst., 135 (2015), 102–110. https://doi.org/10.1541/ieejeiss.135.102 doi: 10.1541/ieejeiss.135.102
    [8] J. Zhang, H. Wang, M. Ma, M. Yu, A. Yazdani, L. Chen, Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine, IEEE Trans. Veh. Technol., 69 (2020), 14713–14726. https://doi.org/10.1109/TVT.2020.3036400 doi: 10.1109/TVT.2020.3036400
    [9] D. Huang, C. Yang, Z. Ju, S. Dai, Disturbance observer enhanced variable gain controller for robot teleoperation with motion capture using wearable armbands, Auton. Robot., 44 (2020), 1217–1231. https://doi.org/10.1007/s10514-020-09928-7 doi: 10.1007/s10514-020-09928-7
    [10] N. Huang, J. S. Yang, A. W. Verl, W. Xu, Disturbance observer-based controller for mimicking mandibular motion and studying temporomandibular joint reaction forces by a chewing robot, 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2020), Boston, Massachusetts, USA, 2020, 1042–1047. http://doi.org/10.1109/AIM43001.2020.9158891
    [11] W. Ren, Q. Qiao, K. Nie, Y. Mao, Robust DOBC for stabilization loop of a two-axes gimbal system, IEEE Access, 7 (2019), 110554–110562. https://doi.org/10.1109/ACCESS.2019.2933447 doi: 10.1109/ACCESS.2019.2933447
    [12] W. Bu, T. Li, J. Yang, Y. Yi, Disturbance observer-based event-triggered tracking control of networked robot manipulator, Meas. Control, 53 (2020), 892–898. https://doi.org/10.1177/0020294020911084 doi: 10.1177/0020294020911084
    [13] M. A. Abbasi, A. R. Husain, N. R. N. Idris, W. Anjum, H. Bassi, M. J. H. Rawa Predictive flux control for induction motor drives with modified disturbance observer for improved transient response, IEEE Access, 8 (2020), 112484–112495. https://doi.org/10.1109/ACCESS.2020.3003005 doi: 10.1109/ACCESS.2020.3003005
    [14] M. V. Nguyen, T. V. Duy, M. C. Ta, Comparative study of disturbance observer-based control and active disturbance rejection control in brushless DC motor drives, 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 2019, 1–6. https://doi.org/10.1109/VPPC46532.2019.8952367
    [15] B. Xu, Composite learning finite-time control with application to quadrotors, IEEE Trans. Syst. Man Cybern.: Syst., 48 (2017), 1806–1815. https://doi.org/10.1109/TSMC.2017.2698473 doi: 10.1109/TSMC.2017.2698473
    [16] B. Xu, F. Sun, Composite intelligent learning control of strict-feedback systems with disturbance, IEEE Trans. Cybern., 48 (2017), 730–741. https://doi.org/10.1109/TCYB.2017.2655053 doi: 10.1109/TCYB.2017.2655053
    [17] J. Xu, X. Sun, J. Qian, Hybrid disturbance observer-based anti-disturbance composite control with applications to mars landing mission, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2019), 2885–2893. https://doi.org/10.1109/TSMC.2019.2917528 doi: 10.1109/TSMC.2019.2917528
    [18] J. Qiao, Z. Liu, W. Li, Anti-disturbance attitude control of combined spacecraft with enhanced control allocation scheme, Chin. J. Aeronaut., 31 (2018), 1741–1751. https://doi.org/10.1016/j.cja.2018.06.009 doi: 10.1016/j.cja.2018.06.009
    [19] J. Chen, R. Sun, B. Zhu, Disturbance observer-based control for small nonlinear UAV systems with transient performance constraint, Aerosp. Sci. Technol., 105 (2020), 28–45. https://doi.org/10.1016/j.ast.2020.106028 doi: 10.1016/j.ast.2020.106028
    [20] J. Qiao, X. Li, J. Xu, A composite disturbance observer and $H_\infty$ control scheme for flexible spacecraft with measurement delay and input delay, Chin. J. Aeronaut., 32 (2019), 1472–1480. https://doi.org/10.1016/j.cja.2018.10.013 doi: 10.1016/j.cja.2018.10.013
    [21] T. Feng, Y. Wang, Q. Li, Coordinated control of active front steering and active disturbance rejection sliding mode-based DYC for 4WID-EV, Meas. Control, 53 (2020), 1870–1882. https://doi.org/10.1177/0020294020959111 doi: 10.1177/0020294020959111
    [22] J. Feng, Z. Wang, H. Li, W. Zhao, Path following control of autonomous four-wheel-independent-drive electric vehicles via second-order sliding mode and nonlinear disturbance observer techniques, IEEE Trans. Ind. Electron., 68 (2020), 2460–2469. https://doi.org/10.1109/TIE.2020.2973879 doi: 10.1109/TIE.2020.2973879
    [23] S. Coskun, L. Li, Vehicle lateral motion control via robust delay-dependent Takagi-Sugeno strategy, IEEE Trans. Ind. Electron., 43 (2021), 1430–1444. https://doi.org/10.1177/0142331220979946 doi: 10.1177/0142331220979946
    [24] L. Zhang, Y. Wang, Z. Wang, Robust lateral motion control for in-wheel-motor-drive electric vehicles with network induced delays, IEEE Trans. Veh. Technol., 68 (2019), 10585–10593. https://doi.org/10.1109/TVT.2019.2942628 doi: 10.1109/TVT.2019.2942628
    [25] W. Cao, J. Liu, J. Li, Q. Yang, H. He, Networked motion control for smart EV with multiple-package transmissions and time-varying network-induced delays, IEEE Trans. Ind. Electron., 69 (2021), 4076–4086. https://doi.org/10.1109/TIE.2021.3070499 doi: 10.1109/TIE.2021.3070499
    [26] C. Zhang, J. Hu, J. Qiu, W. Yang, H. Sun, Q. Chen, A novel fuzzy observer-based steering control approach for path tracking in autonomous vehicles, IEEE Trans. Fuzzy Syst., 27 (2018), 278–290. https://doi.org/10.1109/TFUZZ.2018.2856187 doi: 10.1109/TFUZZ.2018.2856187
    [27] X. Jin, Z. Yu, G. Yin, J. Wang, Improving vehicle handling stability based on combined AFS and DYC system via robust Takagi-Sugeno fuzzy control, IEEE Trans. Intell. Transp. Syst., 19 (2017), 2696–2707. https://doi.org/10.1109/TITS.2017.2754140 doi: 10.1109/TITS.2017.2754140
    [28] W. Li, Z. Xie, J. Zhao, J. Gao, Y. Hu, P. K. Wong, Human-Machine Shared Steering Control for Vehicle Lane Keeping Systems via a Fuzzy Observer-Based Event-Triggered Method, IEEE Trans. Intell. Transp. Syst., 23 (2021), 13731–13744. https://doi.org/10.1109/TITS.2021.3126876 doi: 10.1109/TITS.2021.3126876
    [29] L. Wang, H. K. Lam, A new approach to stability and stabilization analysis for continuous-time Takagi-Sugeno fuzzy systems with time delay, IEEE Trans. Intell. Transp. Syst., 26 (2017), 2460–2465. https://doi.org/10.1109/TFUZZ.2017.2752723 doi: 10.1109/TFUZZ.2017.2752723
    [30] Z. Sheng, C. Lin, B. Chen, Q. Wang, An asymmetric Lyapunov-Krasovskii functional method on stability and stabilization for T-S fuzzy systems with time delay, IEEE Trans. Fuzzy. Syst., 30 (2021), 2135–2140. https://doi.org/10.1109/TFUZZ.2021.3076512 doi: 10.1109/TFUZZ.2021.3076512
    [31] G. Li, C. Peng, X. Xie, S. Xie, On stability and stabilization of T-S fuzzy systems with time-varying delays via quadratic fuzzy Lyapunov matrix, IEEE Trans. Fuzzy. Syst., 30 (2021), 3762–3773. https://doi.org/10.1109/TFUZZ.2021.3128062 doi: 10.1109/TFUZZ.2021.3128062
    [32] Z. Sheng, L. Wang, C. Lin, B. Chen, A Novel Asymmetric Lyapunov-Krasovskii Functional Method to Stability for T–S Fuzzy Systems with Time-Varying Delay, Int. J. Fuzzy Syst., 24 (2022), 949–956. https://doi.org/10.1007/s40815-021-01176-w doi: 10.1007/s40815-021-01176-w
    [33] Y. Qiu, J. H. Park, C. Hua, X. Wang, Stability Analysis of Time-Varying Delay TS Fuzzy Systems Via Quadratic-Delay-Product Method, IEEE Trans. Fuzzy. Syst., 31 (2022), 129–137. https://doi.org/10.1109/TFUZZ.2022.3182786 doi: 10.1109/TFUZZ.2022.3182786
    [34] G. Liu, X. Chang, J. H. Park, M. Hu, Fault Detection Observer Design for Nonlinear Systems via Fuzzy Lyapunov Functions, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 6607–6617. https://doi.org/10.1109/TSMC.2022.3147459 doi: 10.1109/TSMC.2022.3147459
    [35] X. H. Chang, Y. Liu, Quantized Output Feedback Control of AFS for Electric Vehicles With Transmission Delay and Data Dropouts, IEEE Trans. Intell. Transp. Syst., 23 (2022), 16026–16037. https://doi.org/10.1109/TITS.2022.3147481 doi: 10.1109/TITS.2022.3147481
    [36] H. Xu, Y. Zhao, W. Pi, Q. Wang, F. Lin, C. Zhang, Integrated Control of Active Front Wheel Steering and Active Suspension Based on Differential Flatness and Nonlinear Disturbance Observer, IEEE Trans. Veh. Technol., 71 (2022), 4813–4824. https://doi.org/10.1109/TVT.2022.3151252 doi: 10.1109/TVT.2022.3151252
    [37] A. T. Nguyen, T. Q. Dinh, T. M. Guerra, J. Pan, Takagi–Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification, IEEE/ASME Trans. Mechatron., 26 (2021), 1328–1338. https://doi.org/10.1109/TMECH.2020.3049070 doi: 10.1109/TMECH.2020.3049070
    [38] H. Han, J. Chen, H. R. Karimi, State and disturbance observers-based polynomial fuzzy controller, Inf. Sci., 382 (2017), 38–59. https://doi.org/10.1016/j.ins.2016.12.006 doi: 10.1016/j.ins.2016.12.006
    [39] S. Hao, T. Liu, B. Zhou, Output feedback anti-disturbance control of input-delayed systems with time-varying uncertainties, Automatica, 104 (2019), 8–16. https://doi.org/10.1016/j.automatica.2019.02.047 doi: 10.1016/j.automatica.2019.02.047
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1264) PDF downloads(39) Cited by(1)

Article outline

Figures and Tables

Figures(13)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog