Research article

Multiplicity results for some fourth-order elliptic equations with combined nonlinearities

  • Received: 19 February 2023 Revised: 11 April 2023 Accepted: 16 April 2023 Published: 20 April 2023
  • MSC : 35J30, 35J60, 35J91

  • In this paper, we regard with some fourth-order elliptic boundary value problems involving subcritical polynomial growth and subcritical (critical) exponential growth. Some new existence and multiplicity results are established by using variational methods combined Adams inequality.

    Citation: Ruichang Pei, Hongming Xia. Multiplicity results for some fourth-order elliptic equations with combined nonlinearities[J]. AIMS Mathematics, 2023, 8(6): 14704-14725. doi: 10.3934/math.2023752

    Related Papers:

  • In this paper, we regard with some fourth-order elliptic boundary value problems involving subcritical polynomial growth and subcritical (critical) exponential growth. Some new existence and multiplicity results are established by using variational methods combined Adams inequality.



    加载中


    [1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [2] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. Math., 128 (1988), 385–398. https://doi.org/10.2307/1971445 doi: 10.2307/1971445
    [3] Y. K. An, R. Y. Liu, Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation, Nonlinear Anal. Theor., 68 (2008), 3325–3331. https://doi.org/10.1016/j.na.2007.03.028 doi: 10.1016/j.na.2007.03.028
    [4] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pur. Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
    [5] D. G. Costa, C. A. Magalh$\mathrm{\tilde{a}}$es, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal. Theor., 23 (1994), 1401–1412. https://doi.org/10.1016/0362-546X(94)90135-X doi: 10.1016/0362-546X(94)90135-X
    [6] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332–336.
    [7] E. da Silva, T. R. Cavalcante, Multiplicity of solutions to fourth-order superlinear elliptic problems under Navier conditions, Electron. J. Differ. Eq., 167 (2017), 1–16.
    [8] D. G. de Figueiredo, J. M. do Ó, B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var., 3 (1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
    [9] J. M. do Ó, Semilinear Dirichlet problems for the $N$-Laplacian in $\mathbb{R}^N$ with nonlinearities in the critical growth range, Differ. Integral Equ., 9 (1996), 967–979. https://doi.org/10.57262/die/1367871526 doi: 10.57262/die/1367871526
    [10] Q. H. He, Z. Y. L, Existence and nonexistence of nontrivial solutions for critical biharmonic equations, J. Math. Anal. Appl., 495 (2021), 124713, https://doi.org/10.1016/j.jmaa.2020.124713 doi: 10.1016/j.jmaa.2020.124713
    [11] S. Hu, L. Wang, Existence of nontrivial solutions for fourth-order asymptotically linear elliptic equations, Nonlinear Anal. Theor., 94 (2014), 120–132. https://doi.org/10.1016/j.na.2013.08.008 doi: 10.1016/j.na.2013.08.008
    [12] L. Jeanjean, On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer-type problem set on $\mathbb{R}^N$, P. Roy. Soc. Edinb. A, 129 (1999), 787–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147
    [13] A. C. Lazer, P. J. Mckenna, Large amplitude periodic oscillation in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. https://doi.org/10.1137/1032120 doi: 10.1137/1032120
    [14] A. C. Lazer, P. J. Mckenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181 (1994), 648–655. https://doi.org/10.1006/jmaa.1994.1049 doi: 10.1006/jmaa.1994.1049
    [15] N. Lam, G. Z. Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth, Discrete Cont. Dyn., 32 (2012), 2187–2205. https://doi.org/10.3934/dcds.2012.32.2187 doi: 10.3934/dcds.2012.32.2187
    [16] X. Q. Liu, Y. S. Huang, On sign-changing solution for a fourth-order asymptotically linear elliptic problem, Nonlinear Anal. Theor., 72 (2010), 2271–2276. https://doi.org/10.1016/j.na.2009.11.001 doi: 10.1016/j.na.2009.11.001
    [17] Y. Liu, Z. P. Wang, Biharmonic equations with asymptotically linear nonlinearities, Acta Math. Sci., 27 (2007), 549–560. https://doi.org/10.1016/S0252-9602(07)60055-1 doi: 10.1016/S0252-9602(07)60055-1
    [18] Y. Lu, Y. Q. Fu, Multiplicity results for solutions of $p$-biharmonic problems, Nonlinear Anal., 190 (2020), 111596. https://doi.org/10.1016/j.na.2019.111596 doi: 10.1016/j.na.2019.111596
    [19] Z. L. Liu, Z. Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 563–574. https://doi.org/10.1515/ans-2004-0411 doi: 10.1515/ans-2004-0411
    [20] A. M. Micheletti, A. Pistoia, Multiplicity solutions for a fourth order semilinear elliptic problems, Nonlinear Anal. Theor., 31 (1998), 895–908. https://doi.org/10.1016/S0362-546X(97)00446-X doi: 10.1016/S0362-546X(97)00446-X
    [21] P. J. Mckenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167–177. https://doi.org/10.1007/BF00251232 doi: 10.1007/BF00251232
    [22] P. J. Mckenna, W. Walter Travelling waves in a suspension bridge, SIAM J. Appl. Math., , 50 (1990), 703–715. https://doi.org/10.1137/0150041 doi: 10.1137/0150041
    [23] A. Ourraoui, Some results for Robin type problem involving $p(x)$-Laplacian, Filomat, 36 (2022), 2105–2117. https://doi.org/10.2298/FIL2206105O doi: 10.2298/FIL2206105O
    [24] R. C. Pei, J. H. Zhang, Biharmonic equations with improved subcritical polynomial and subcritical exponential growth, Bound. Value Probl., 2014 (2014), 162. https://doi.org/10.1186/s13661-014-0162-y doi: 10.1186/s13661-014-0162-y
    [25] R. C. Pei, Fractional $p$-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, Mediterr. J. Math., 15 (2018), 66. https://doi.org/10.1007/s00009-018-1115-y doi: 10.1007/s00009-018-1115-y
    [26] Y. Pu, X. P. Wu, C. L. Tang, Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl., 398 (2013), 798–813. https://doi.org/10.1016/j.jmaa.2012.09.019 doi: 10.1016/j.jmaa.2012.09.019
    [27] Z. H. Qiu, On the multiplicity of solutions for the discrete boundary problem involving the singular phi-Laplacian, J. Funct. Space., 2021 (2021), 7013733. https://doi.org/10.1155/2021/7013733 doi: 10.1155/2021/7013733
    [28] B. Ruf, F. Sani, Sharp Adams-type inequalities in $\mathbb{R}^N$, T. Am. Math. Soc., 365 (2013), 645–670.
    [29] M. A. Ragusa, Local Holder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397. https://doi.org/10.1215/S0012-7094-02-11327-1 doi: 10.1215/S0012-7094-02-11327-1
    [30] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, American Mathematical Society, 1986.
    [31] M. Schechter, W. M. Zou, Superlinear problems, Pac. J. Math., 214 (2004), 145–160. https://doi.org/10.2140/pjm.2004.214.145 doi: 10.2140/pjm.2004.214.145
    [32] M. Willem, Minimax theorems, Birkhäuser, 1996.
    [33] Y. H. Wei, Multiplicity results for some fourth-order elliptic quations, J. Math. Anal. Appl., 385 (2012), 797–807. https://doi.org/10.1016/j.jmaa.2011.07.011 doi: 10.1016/j.jmaa.2011.07.011
    [34] G. X. Xu, J. H. Zhang, Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity, J. Math. Anal. Appl., 281 (2003), 633–640. https://doi.org/10.1016/S0022-247X(03)00170-7 doi: 10.1016/S0022-247X(03)00170-7
    [35] Y. Yang, J. H. Zhang, Existence of solutions for some fourth-order nonlinear elliptic problems, J. Math. Anal. Appl., 351 (2009), 128–137. https://doi.org/10.1016/j.jmaa.2008.08.023 doi: 10.1016/j.jmaa.2008.08.023
    [36] J. W. Zhou, X. Wu, Sign-changing solutions for some fourth-order nonlinear elliptic problems, J. Math. Anal. Appl., 342 (2008), 542–558. https://doi.org/10.1016/j.jmaa.2007.12.020 doi: 10.1016/j.jmaa.2007.12.020
    [37] J. Zhang, Z. L. Wei, Infinitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems, Nonlinear Anal. Theor., 74 (2011), 7474–7485. https://doi.org/10.1016/j.na.2011.07.067 doi: 10.1016/j.na.2011.07.067
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1048) PDF downloads(42) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog