In this paper, we regard with some fourth-order elliptic boundary value problems involving subcritical polynomial growth and subcritical (critical) exponential growth. Some new existence and multiplicity results are established by using variational methods combined Adams inequality.
Citation: Ruichang Pei, Hongming Xia. Multiplicity results for some fourth-order elliptic equations with combined nonlinearities[J]. AIMS Mathematics, 2023, 8(6): 14704-14725. doi: 10.3934/math.2023752
[1] | Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314 |
[2] | Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062 |
[3] | Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661 |
[4] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[5] | Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117 |
[6] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[7] | Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808 |
[8] | Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619 |
[9] | M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and M−W-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780 |
[10] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
In this paper, we regard with some fourth-order elliptic boundary value problems involving subcritical polynomial growth and subcritical (critical) exponential growth. Some new existence and multiplicity results are established by using variational methods combined Adams inequality.
The convexity of function is a classical concept, since it plays a fundamental role in mathematical programming theory, game theory, mathematical economics, variational science, optimal control theory and other fields, a new branch of mathematics, convex analysis, appeared in the 1960s. However, it has been noticed that the functions encountered in a large number of theoretical and practical problems in economics are not classical convex functions, therefore, in the past decades, the generalization of function convexity has attracted the attention of many scholars and aroused great interest, such as h-convex functions [1,2,3,4,5], log-convex functions [6,7,8,9,10], log-h-convex functions [11], and especially for coordinated convex [12]. Since 2001, various extensions and generalizations of integral inequalities for coordinated convex functions have been established in [12,13,14,15,16,17].
On the other hand, calculation error has always been a troublesome problem in numerical analysis. In many problems, it is often to speculate the accuracy of calculation results or use high-precision operation as far as possible to ensure the accuracy of the results, because the accumulation of calculation errors may make the calculation results meaningless, interval analysis as a new important tool to solve uncertainty problems has attracted much attention and also has yielded fruitful results, we refer the reader to the papers [18,19]. It is worth notion that in recent decades, many authors have combined integral inequalities with interval-valued functions(IVFs) and obtained many excellent conclusions. In [20], Costa gave Opial-type inequalities for IVFs. In [21,22], Chalco-Cano investigated Ostrowski type inequalities for IVFs by using generalized Hukuhara derivative. In [23], Román-Flores derived the Minkowski type inequalities and Beckenbach's type inequalities for IVFs. Very recently, Zhao [5,24] established the Hermite-Hadamard type inequalities for interval-valued coordinated functions.
Motivated by these results, in the present paper, we introduce the concept of coordinated log-h-convex for IVFs, and then present some new Jensen type inequalities and Hermite-Hadamard type inequalities for interval-valued coordinated functions. Also, we give some examples to illustrate our main results.
Let RI the collection of all closed and bounded intervals of R. We useR+IandR+ to represent the set of all positive intervals and the family of all positive real numbers respectively. The collection of all Riemann integrable real-valued functions on [a,b], IVFs on [a,b] and IVFs on △=[a,b]×[c,d] are denoted by R([a,b]), IR([a,b]) and ID(△). For more conceptions on IVFs, see [4,25]. Moreover, we have
Theorem 1. [4] Let f:[a,b]→RI such that f=[f_,¯f]. Then f∈IR([a,b]) iff f_, ¯f∈R([a,b]) and
(IR)∫baf(x)dx=[(R)∫baf_(x)dx,(R)∫ba¯f(x)dx]. |
Theorem 2. [25] Let F:△→RI. If F∈ID(△), then
(ID)∬△F(x,y)dxdy=(IR)∫badx(IR)∫dcF(x,y)dy. |
Definition 1. [26] Let h:[0,1]→R+. We say that f:[a,b]→R+I is interval log-h-convex function or that f∈SX(log-h,[a,b],R+I), if for all x,y∈[a,b] and ϑ∈[0,1], we have
f(ϑx+(1−ϑ)y)⊇[f(x)]h(ϑ)[f(y)]h(1−ϑ). |
h is called supermultiplicative if
h(ϑτ)≥h(ϑ)h(τ) | (2.1) |
for all ϑ,τ∈[0,1]. If "≥" in (2.1) is replaced with "≤", then h is called submultiplicative.
Theorem 3. [26] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
F(a+b2)12h(12)⊇exp[1b−a∫balnF(x)dx]⊇[F(a)F(b)]∫10h(ϑ)dϑ. | (2.2) |
Theorem 4. [27] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
[F(a+b2)]14h2(12)⊇[F(3a+b4)F(a+3b4)]14h(12)⊇(∫baF(x)dx)1b−a⊇[F(a)F(b)F2(a+b2)]12∫10h(ϑ)dϑ⊇[F(a)F(b)][12+h(12)]∫10h(ϑ)dϑ. | (2.3) |
In this section, we define the coordinated log-h-convex for IVFs and prove some new Jensen type inequalities and Hermite-Hadamard type inequalities by using this new definition.
Definition 2. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVFs on △ if the partial mappings
Fy:[a,b]→R+I,Fy(x)=F(x,y),Fx:[c,d]→R+I,Fx(y)=F(x,y) |
are log-h-convex for all y∈[c,d] and x∈[a,b]. Then the set of all coordinated log-h-convex IVFs on △ is denoted by SX(log-ch,△,R+I).
Definition 3. Let h:[0,1]→R+. Then F:△→R+ is called a coordinated log-h-convex function in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)≤[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). | (3.1) |
The set of all log-h-convex functions in △ is denoted by SX(log-h,△,R+). If inequality (3.1) is reversed, then F is said to be a coordinated log-h-concave function, the set of all log-h-concave functions in △ is denoted by SV(log-h,△,R+).
Definition 4. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVF in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)⊇[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). |
The set of all log-h-convex IVFs in △ is denoted by SX(log-h,△,R+I).
Theorem 5. Let F:△→R+I such that F=[F_,¯F]. If F∈SX(log-h,△,R+I) iff F_∈SX(log-h,△,R+) and ¯F∈SV(log-h,△,R+).
Proof. The proof is completed by combining the Definitions 3 and 4 above and the Theorem 3.7 of [4].
Theorem 6. If F∈SX(log-h,△,R+I), then F∈SX(log-ch,△,R+I).
Proof. Assume that F∈SX(log-h,△,R+I). Let Fx:[c,d]→R+I,Fx(y)=F(x,y). Then for all ϑ∈[0,1] and y1,y2∈[c,d], we have
Fx(ϑy1+(1−ϑ)y2)=F(x,ϑy1+(1−ϑ)y2)⊇F(ϑx+(1−ϑ)x,ϑy1+(1−ϑ)y2)⊇[F(x,y1)]h(ϑ)[F(x,y2)]h(1−ϑ)=[Fx(y1)]h(ϑ)[Fx(y2)]h(1−ϑ). |
Hence Fx(y)=F(x,y) is log-h-convex on [c,d]. The fact that Fy(x)=F(x,y) is log-h-convex on [a,b] goes likewise.
Remark 1. The converse of Theorem 6 is not generally true. Let h(ϑ)=ϑ and ϑ∈[0,1], △1=[π4,π2]×[π4,π2], and F:△1→R+I be defined:
F(x,y)=[e−sinx−siny,64xy]. |
Obviously, we have that F∈SX(log-ch,△1,R+I) and F∉SX(log-h,△1,R+I). Indeed, if (π4,π2),(π2,π4)∈△1, we have
F(ϑπ4+(1−ϑ)π2,ϑπ2+(1−ϑ)π4)=[e−sinϑπ4−sin(1−ϑ)π2,8π2ϑ(1−ϑ)],(F(π4,π2))h(ϑ)(F(π2,π4))h(1−ϑ)=[e(1−√22)ϑ−1,2ϑ+1π]. |
If ϑ=0, then
[0,1e]⊉[1e,2π]. |
Thus, F∉SX(log-h,△1,R+I).
In the following, Jensen type inequalities for coordinated log-h-convex functions in △ is considered.
Theorem 7. Let pi∈R+,xi∈[a,b],yi∈[c,d],(i=1,2,...,n),F:△→R+. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F(xi,yi)]h(piPn), | (3.2) |
where Pn=n∑i=1pi. If h is a nonnegative submultiplicative function and F∈SV(log-h,△,R+), then (3.2) is reversed.
Proof. If n=2, then from Definition 3, we have
F(p1P2x1+p2P2x2,p1P2y1+p2P2y2)≤[F(x1,y1)]h(p1P2)[F(x2,y2)]h(p2P2). |
Suppose (3.2) holds for n=k, then
F(1Pkk∑i=1pixi,1Pkk∑i=1piyi)≤k∏i=1[F(xi,yi)]h(piPk). |
Now, let us prove that (3.2) is valid when n=k+1,
F(1Pk+1k+1∑i=1pixi,1Pk+1k+1∑i=1piyi)=F(1Pk+1k−1∑i=1pixi+pk+pk+1Pk+1(pkxkpk+pk+1+pk+1xk+1pk+pk+1),1Pk+1k−1∑i=1piyi+pk+pk+1Pk+1(pkykpk+pk+1+pk+1yk+1pk+pk+1))≤[F(pkxkpk+pk+1+pk+1xk+1pk+pk+1,pkykpk+pk+1+pk+1yk+1pk+pk+1)]h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤([F(xk,yk)]h(pkpk+pk+1)[F(xk+1,yk+1)]h(pk+1pk+pk+1))h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤[F(xk,yk)]h(pkPk+1)[F(xk+1,yk+1)]h(pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)=k+1∏i=1[F(xi,yi)]h(piPk+1). |
This completes the proof.
Remark 2. If h(ϑ)=ϑ, then the inequality (3.2) is the Jensen inequality for log-convex functions.
Now, we prove the Jensen inequality for log-h-convex IVFs in △.
Theorem 8. Let pi∈R+,xi∈[a,b],yi∈[c,d],i=1,2,...,n,F:△→R+I such that F=[F_,¯F]. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+I), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)⊇n∏i=1[F(xi,yi)]h(piPn), | (3.3) |
where Pn=n∑i=1pi. If F∈SV(log-h,△,R+I), then (3.3) is reversed.
Proof. By Theorem 5 and Theorem 7, we have
F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F_(xi,yi)]h(piPn) |
and
¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≥n∏i=1[¯F(xi,yi)]h(piPn). |
Thus,
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)=[F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi),¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)]⊇[n∏i=1[F_(xi,yi)]h(piPn),n∏i=1[¯F(xi,yi)]h(piPn)]=n∏i=1[F(xi,yi)]h(piPn). |
This completes the proof.
Next, we prove the Hermite-Hadamard type inequalities for coordinated log-h-convex IVFs.
Theorem 9. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h2(12)⊇exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]⊇exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]⊇exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1−−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]⊇[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2. | (3.4) |
Proof. Since F∈SX(log-ch,△,R+I), we have
Fx(c+d2)=Fx(ϑc+(1−ϑ)d+(1−ϑ)c+ϑd2)⊇[Fx(ϑc+(1−ϑ)d)]h(12)[Fx((1−ϑ)c+ϑd)]h(12). |
That is,
lnFx(c+d2)⊇h(12)ln[Fx(ϑc+(1−ϑ)d)Fx((1−ϑ)c+ϑd)]. |
Moreover, we have
1h(12)lnFx(c+d2)⊇[∫10lnFx(ϑc+(1−ϑ)d)dϑ+∫10lnFx((1−ϑ)c+ϑd)dϑ]=[∫10lnF_x(ϑc+(1−ϑ)d)dϑ,∫10ln¯Fx(ϑc+(1−ϑ)d)dϑ]+[∫10lnF_x((1−ϑ)c+ϑd)dϑ,∫10ln¯Fx((1−ϑ)c+ϑd)dϑ]=2[1d−c∫dclnF_x(y)dy,1d−c∫dcln¯Fx(y)dy]=2d−c∫dclnFx(y)dy. |
Similarly, we get
1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
Then
12h(12)lnFx(c+d2)⊇1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
That is,
12h(12)lnF(x,c+d2)⊇1d−c∫dclnF(x,y)dy⊇ln[F(x,c)F(x,d)]∫10h(ϑ)dϑ. |
Integrating over [a,b], we have
12h(12)(b−a)∫balnF(x,c+d2)dx⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx]∫10h(ϑ)dϑ. |
Similarly, we have
12h(12)(d−c)∫dclnF(a+b2,y)dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]∫10h(ϑ)dϑ. |
Finally, we obtain
14h2(12)lnF(a+b2,c+d2)=14h(12)[12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy]⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12∫10h(ϑ)dϑ[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]⊇12(∫10h(ϑ)dϑ)2[lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)+lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)]⊇(∫10h(ϑ)dϑ)2[lnF(a,c)F(a,d)F(b,c)F(b,d)]. |
This concludes the proof.
Remark 3. If F_=¯F and h(ϑ)=ϑ, then Theorem 9 reduces to Corollary 3.1 of [13].
Example 1. Let [a,b]=[c,d]=[2,3],h(ϑ)=ϑ. We define F:[2,3]×[2,3]→R+I by
F(x,y)=[1xy,e√x+√y]. |
From Definition 2, F(x,y)∈SX(log-ch,△,R+I).
Since
[F(a+b2,c+d2)]14h2(12)=[425,e√10],exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]=[8e135,e√102+2√3−4√23],exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]=[16e2729,e43(3√3−2√2)],exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]=[2√6e81,e15√3−5√26], |
and
[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2=[16,e√2+√3]. |
It follows that
[425,e√10]⊇[8e135,e√102+2√3−4√23]⊇[16e2729,e43(3√3−2√2)]⊇[2√6e81,e15√3−5√26]⊇[16,e√2+√3] |
and Theorem 9 is verified.
Theorem 10. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h3(12)⊇exp[14h2(12)(b−a)∫baln(F(x,c+d2))dx+14h2(12)(d−c)∫dcln(F(a+b2,y))dy]⊇exp[14h(12)(b−a)∫baln(F(x,3c+d4)F(x,c+3d4))dx+14h(12)(d−c)∫dcln(F(3a+b4,y)F(a+3b4,y))dy]⊇exp[2(b−a)(d−c)∫ba∫dclnF(x,y)dxdy] | (3.5) |
⊇exp[12(b−a)∫baln(F(x,c)F(x,d)F2(x,fracc+d2))dx∫10h(ϑ)dϑ+12(d−c)∫dcln(F(a,y)F(b,y)F2(a+b2,y))dy∫10h(ϑ)dϑ]⊇exp[(12+h(12))1b−a∫baln[F(x,c)F(x,d)]dx∫10h(ϑ)dϑ+(12+h(12))1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ]⊇[F(a,c)F(a,d)F(b,c)F(b,d)F(a+b2,c)F(a+b2,d)×F(a,c+d2)F(b,c+d2)][12+h(12)](∫10h(ϑ)dϑ)2⊇[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(ϑ)dϑ)2. |
Proof. Since F∈SX(log-ch,△,R+I), by using Theorem 6 and (2.3), we have
14h2(12)ln[Fy(a+b2)]⊇14h(12)ln[Fy(3a+b4)Fy(a+3b4)]⊇1b−a∫balnFy(x)dx⊇12ln[Fy(a)Fy(b)F2y(a+b2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[Fy(a)Fy(b)]∫10h(ϑ)dϑ. |
That is,
14h2(12)ln[F(a+b2,y)]⊇14h(12)ln[F(3a+b4,y)F(a+3b4,y)]⊇1b−a∫balnF(x,y)dx⊇12ln[F(a,y)F(b,y)F2(a+b2,y)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,y)F(b,y)]∫10h(ϑ)dϑ. |
Moreover, we have
14h2(12)(d−c)∫dcln[F(a+b2,y)]dy⊇14h(12)(d−c)∫dcln[F(3a+b4,y)F(a+3b4,y)]dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12(d−c)∫dcln[F(a,y)F(b,y)F2(a+b2,y)]dy∫10h(ϑ)dϑ⊇[12+h(12)]1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ. |
Similarly, we have
![]() |
We also from (2.2),
12h(12)lnF(a+b2,c+d2)⊇1b−a∫balnF(x,c+d2)dx,12h(12)lnF(a+b2,c+d2)⊇1d−c∫dclnF(a+b2,y)dy. |
Again from (2.3),
1b−a∫balnF(x,c)dx⊇12ln[F(a,c)F(b,c)F2(a+b2,c)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(b,c)]∫10h(ϑ)dϑ,1b−a∫balnF(x,d)ds⊇12ln[F(a,d)F(b,d)F2(a+b2,d)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,d)F(b,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(a,y)dy⊇12ln[F(a,c)F(a,d)F2(a,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(a,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(b,y)dy⊇12ln[F(b,c)F(b,d)F2(b,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(b,c)F(b,d)]∫10h(ϑ)dϑ |
and proof is completed.
Example 2. Furthermore, by Example 1, we have
![]() |
and
[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(θ)dθ)2=[136,e2√3+2√2]. |
It follows that
[16625,e2√10]⊇[64e218225,e4(3√3−2√2)+3√103]⊇[256e272171,e4(3√3−2√2)3+3+√112]⊇[256e4531441,e8(3√3−2√2)3]⊇[16√6e210935,e12√3−8√2+3√106]⊇[8e22187,e15√3−5√23]⊇[√690,e3√3+3√2+√102]⊇[136,e2√3+2√2] |
and Theorem 10 is verified.
We introduced the coordinated log-h-convexity for interval-valued functions, some Jensen type inequalities and Hermite-Hadamard type inequalities are proved. Our results generalize some known inequalities and will be useful in developing the theory of interval integral inequalities and interval convex analysis. The next step in the research direction investigated inequalities for fuzzy-interval-valued functions, and some applications in interval nonlinear programming.
The first author was supported in part by the Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500) and the National Key Research and Development Program of China (2018YFC1508100).
The authors declare no conflict of interest.
[1] |
A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
![]() |
[2] |
D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. Math., 128 (1988), 385–398. https://doi.org/10.2307/1971445 doi: 10.2307/1971445
![]() |
[3] |
Y. K. An, R. Y. Liu, Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation, Nonlinear Anal. Theor., 68 (2008), 3325–3331. https://doi.org/10.1016/j.na.2007.03.028 doi: 10.1016/j.na.2007.03.028
![]() |
[4] |
H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pur. Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
![]() |
[5] |
D. G. Costa, C. A. Magalh˜aes, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal. Theor., 23 (1994), 1401–1412. https://doi.org/10.1016/0362-546X(94)90135-X doi: 10.1016/0362-546X(94)90135-X
![]() |
[6] | G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332–336. |
[7] | E. da Silva, T. R. Cavalcante, Multiplicity of solutions to fourth-order superlinear elliptic problems under Navier conditions, Electron. J. Differ. Eq., 167 (2017), 1–16. |
[8] |
D. G. de Figueiredo, J. M. do Ó, B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var., 3 (1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
![]() |
[9] |
J. M. do Ó, Semilinear Dirichlet problems for the N-Laplacian in RN with nonlinearities in the critical growth range, Differ. Integral Equ., 9 (1996), 967–979. https://doi.org/10.57262/die/1367871526 doi: 10.57262/die/1367871526
![]() |
[10] |
Q. H. He, Z. Y. L, Existence and nonexistence of nontrivial solutions for critical biharmonic equations, J. Math. Anal. Appl., 495 (2021), 124713, https://doi.org/10.1016/j.jmaa.2020.124713 doi: 10.1016/j.jmaa.2020.124713
![]() |
[11] |
S. Hu, L. Wang, Existence of nontrivial solutions for fourth-order asymptotically linear elliptic equations, Nonlinear Anal. Theor., 94 (2014), 120–132. https://doi.org/10.1016/j.na.2013.08.008 doi: 10.1016/j.na.2013.08.008
![]() |
[12] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer-type problem set on RN, P. Roy. Soc. Edinb. A, 129 (1999), 787–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147
![]() |
[13] |
A. C. Lazer, P. J. Mckenna, Large amplitude periodic oscillation in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. https://doi.org/10.1137/1032120 doi: 10.1137/1032120
![]() |
[14] |
A. C. Lazer, P. J. Mckenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181 (1994), 648–655. https://doi.org/10.1006/jmaa.1994.1049 doi: 10.1006/jmaa.1994.1049
![]() |
[15] |
N. Lam, G. Z. Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth, Discrete Cont. Dyn., 32 (2012), 2187–2205. https://doi.org/10.3934/dcds.2012.32.2187 doi: 10.3934/dcds.2012.32.2187
![]() |
[16] |
X. Q. Liu, Y. S. Huang, On sign-changing solution for a fourth-order asymptotically linear elliptic problem, Nonlinear Anal. Theor., 72 (2010), 2271–2276. https://doi.org/10.1016/j.na.2009.11.001 doi: 10.1016/j.na.2009.11.001
![]() |
[17] |
Y. Liu, Z. P. Wang, Biharmonic equations with asymptotically linear nonlinearities, Acta Math. Sci., 27 (2007), 549–560. https://doi.org/10.1016/S0252-9602(07)60055-1 doi: 10.1016/S0252-9602(07)60055-1
![]() |
[18] |
Y. Lu, Y. Q. Fu, Multiplicity results for solutions of p-biharmonic problems, Nonlinear Anal., 190 (2020), 111596. https://doi.org/10.1016/j.na.2019.111596 doi: 10.1016/j.na.2019.111596
![]() |
[19] |
Z. L. Liu, Z. Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 563–574. https://doi.org/10.1515/ans-2004-0411 doi: 10.1515/ans-2004-0411
![]() |
[20] |
A. M. Micheletti, A. Pistoia, Multiplicity solutions for a fourth order semilinear elliptic problems, Nonlinear Anal. Theor., 31 (1998), 895–908. https://doi.org/10.1016/S0362-546X(97)00446-X doi: 10.1016/S0362-546X(97)00446-X
![]() |
[21] |
P. J. Mckenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167–177. https://doi.org/10.1007/BF00251232 doi: 10.1007/BF00251232
![]() |
[22] |
P. J. Mckenna, W. Walter Travelling waves in a suspension bridge, SIAM J. Appl. Math., , 50 (1990), 703–715. https://doi.org/10.1137/0150041 doi: 10.1137/0150041
![]() |
[23] |
A. Ourraoui, Some results for Robin type problem involving p(x)-Laplacian, Filomat, 36 (2022), 2105–2117. https://doi.org/10.2298/FIL2206105O doi: 10.2298/FIL2206105O
![]() |
[24] |
R. C. Pei, J. H. Zhang, Biharmonic equations with improved subcritical polynomial and subcritical exponential growth, Bound. Value Probl., 2014 (2014), 162. https://doi.org/10.1186/s13661-014-0162-y doi: 10.1186/s13661-014-0162-y
![]() |
[25] |
R. C. Pei, Fractional p-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, Mediterr. J. Math., 15 (2018), 66. https://doi.org/10.1007/s00009-018-1115-y doi: 10.1007/s00009-018-1115-y
![]() |
[26] |
Y. Pu, X. P. Wu, C. L. Tang, Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl., 398 (2013), 798–813. https://doi.org/10.1016/j.jmaa.2012.09.019 doi: 10.1016/j.jmaa.2012.09.019
![]() |
[27] |
Z. H. Qiu, On the multiplicity of solutions for the discrete boundary problem involving the singular phi-Laplacian, J. Funct. Space., 2021 (2021), 7013733. https://doi.org/10.1155/2021/7013733 doi: 10.1155/2021/7013733
![]() |
[28] | B. Ruf, F. Sani, Sharp Adams-type inequalities in RN, T. Am. Math. Soc., 365 (2013), 645–670. |
[29] |
M. A. Ragusa, Local Holder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397. https://doi.org/10.1215/S0012-7094-02-11327-1 doi: 10.1215/S0012-7094-02-11327-1
![]() |
[30] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, American Mathematical Society, 1986. |
[31] |
M. Schechter, W. M. Zou, Superlinear problems, Pac. J. Math., 214 (2004), 145–160. https://doi.org/10.2140/pjm.2004.214.145 doi: 10.2140/pjm.2004.214.145
![]() |
[32] | M. Willem, Minimax theorems, Birkhäuser, 1996. |
[33] |
Y. H. Wei, Multiplicity results for some fourth-order elliptic quations, J. Math. Anal. Appl., 385 (2012), 797–807. https://doi.org/10.1016/j.jmaa.2011.07.011 doi: 10.1016/j.jmaa.2011.07.011
![]() |
[34] |
G. X. Xu, J. H. Zhang, Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity, J. Math. Anal. Appl., 281 (2003), 633–640. https://doi.org/10.1016/S0022-247X(03)00170-7 doi: 10.1016/S0022-247X(03)00170-7
![]() |
[35] |
Y. Yang, J. H. Zhang, Existence of solutions for some fourth-order nonlinear elliptic problems, J. Math. Anal. Appl., 351 (2009), 128–137. https://doi.org/10.1016/j.jmaa.2008.08.023 doi: 10.1016/j.jmaa.2008.08.023
![]() |
[36] |
J. W. Zhou, X. Wu, Sign-changing solutions for some fourth-order nonlinear elliptic problems, J. Math. Anal. Appl., 342 (2008), 542–558. https://doi.org/10.1016/j.jmaa.2007.12.020 doi: 10.1016/j.jmaa.2007.12.020
![]() |
[37] |
J. Zhang, Z. L. Wei, Infinitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems, Nonlinear Anal. Theor., 74 (2011), 7474–7485. https://doi.org/10.1016/j.na.2011.07.067 doi: 10.1016/j.na.2011.07.067
![]() |
1. | Hajar F. Ismael, Haci Mehmet Baskonus, Hasan Bulut, Wei Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with M-fractional, 2023, 55, 0306-8919, 10.1007/s11082-023-04581-7 | |
2. | Nauman Raza, Abdel-Haleem Abdel-Aty, Traveling wave structures and analysis of bifurcation and chaos theory for Biswas–Milovic Model in conjunction with Kudryshov’s law of refractive index, 2023, 287, 00304026, 171085, 10.1016/j.ijleo.2023.171085 | |
3. | Hakima Khudher Ahmed, Hajar Farhan Ismael, Optical soliton solutions for the nonlinear Schrödinger equation with higher-order dispersion arise in nonlinear optics, 2024, 99, 0031-8949, 105276, 10.1088/1402-4896/ad78c3 | |
4. | Nirman Bhowmike, Zia Ur Rehman, Zarmeena Naz, Muhammad Zahid, Sultan Shoaib, Yasar Amin, Non-linear electromagnetic wave dynamics: Investigating periodic and quasi-periodic behavior in complex engineering systems, 2024, 184, 09600779, 114984, 10.1016/j.chaos.2024.114984 | |
5. | Saumya Ranjan Jena, Itishree Sahu, A novel approach for numerical treatment of traveling wave solution of ion acoustic waves as a fractional nonlinear evolution equation on Shehu transform environment, 2023, 98, 0031-8949, 085231, 10.1088/1402-4896/ace6de | |
6. | Ri Zhang, Muhammad Shakeel, Nasser Bin Turki, Nehad Ali Shah, Sayed M Tag, Novel analytical technique for mathematical model representing communication signals: A new travelling wave solutions, 2023, 51, 22113797, 106576, 10.1016/j.rinp.2023.106576 | |
7. | Exact Solutions of Beta-Fractional Fokas-Lenells Equation via Sine-Cosine Method, 2023, 16, 20710216, 10.14529/mmp230201 |