Research article Special Issues

Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model

  • Received: 29 October 2024 Revised: 28 November 2024 Accepted: 29 November 2024 Published: 13 December 2024
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This investigation offers an innovative analytical strategy, namely the Riccati modified extended simple equation method (RMESEM), to establish and analyze soliton results of the (2+1)-dimensional dynamical generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation (GZK-BBME) in plasma physics. This equation models the physical phenomena of long waves with small and finite amplitude in magnetic plasma. Using a wave transformation, the employed transformative technique first converts GZK-BBME to a nonlinear ordinary differential equation (NODE). With the incorporation of the Riccati equation, a close-form solution is then assumed for the resultant NODE by RMESEM, which converts the NODE into a set of algebraic equations. The fresh plethora of soliton results in the form of rational, exponential, rational-hyperbolic and periodic functional cases are obtained by addressing this set of equations. Several contour, 3D, and 2D graphs are also employed to visualizes the dynamics of these constructed soliton results. These graphs demonstrate that the acquired solitons adopts the type of diverse kink solitons, including cuspon, dark, bright, lump-type, and dark-bright kinks. In addition, our proposed RMESEM shows the applications of the model by producing different traveling soliton results, providing qualitative information on the GZK-BBMEs and possible applications in dealing with other similar kinds of non-linear models.

    Citation: Naher Mohammed A. Alsafri, Hamad Zogan. Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model[J]. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661

    Related Papers:

  • This investigation offers an innovative analytical strategy, namely the Riccati modified extended simple equation method (RMESEM), to establish and analyze soliton results of the (2+1)-dimensional dynamical generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation (GZK-BBME) in plasma physics. This equation models the physical phenomena of long waves with small and finite amplitude in magnetic plasma. Using a wave transformation, the employed transformative technique first converts GZK-BBME to a nonlinear ordinary differential equation (NODE). With the incorporation of the Riccati equation, a close-form solution is then assumed for the resultant NODE by RMESEM, which converts the NODE into a set of algebraic equations. The fresh plethora of soliton results in the form of rational, exponential, rational-hyperbolic and periodic functional cases are obtained by addressing this set of equations. Several contour, 3D, and 2D graphs are also employed to visualizes the dynamics of these constructed soliton results. These graphs demonstrate that the acquired solitons adopts the type of diverse kink solitons, including cuspon, dark, bright, lump-type, and dark-bright kinks. In addition, our proposed RMESEM shows the applications of the model by producing different traveling soliton results, providing qualitative information on the GZK-BBMEs and possible applications in dealing with other similar kinds of non-linear models.



    加载中


    [1] J. G. Caputo, D. Dutykh, Nonlinear waves in networks: model reduction for the sine-Gordon equation, Phys. Rev. E, 90 (2014), 022912. https://doi.org/10.1103/PhysRevE.90.022912 doi: 10.1103/PhysRevE.90.022912
    [2] X. Yang, Z. Wang, Z. Zhang, Generation of anomalously scattered lumps via lump chains degeneration within the Mel'nikov equation, Nonlinear Dyn., 111 (2023), 15293–15307. https://doi.org/10.1007/s11071-023-08615-3 doi: 10.1007/s11071-023-08615-3
    [3] D. Dutykh, J. G. Caputo, Wave dynamics on networks: method and application to the sine-Gordon equation, Appl. Numer. Math., 131 (2018), 54–71. https://doi.org/10.1016/j.apnum.2018.03.010 doi: 10.1016/j.apnum.2018.03.010
    [4] X. Yang, Z. Wang, Z. Zhang, Decay mode ripple waves within the (3+1)-dimensional Kadomtsev-Petviashvili equation, Math. Methods Appl. Sci., 47 (2024), 10444–10461. https://doi.org/10.1002/mma.10132 doi: 10.1002/mma.10132
    [5] X. Yang, Z. Wang, Z. Zhang, Solitons and lump waves to the elliptic cylindrical Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simul., 131 (2024), 107837. https://doi.org/10.1016/j.cnsns.2024.107837 doi: 10.1016/j.cnsns.2024.107837
    [6] R. Ali, Z. Zhang, H. Ahmad, Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study, Opt. Quant. Electron., 56 (2024), 838. https://doi.org/10.1007/s11082-024-06370-2 doi: 10.1007/s11082-024-06370-2
    [7] R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended $(\frac{G'}{G})$-expansion methods for travelling wave solutions of fractional Maccari's system with complex structure, Alex. Eng. J., 79 (2023), 508–530. https://doi.org/10.1016/j.aej.2023.08.007 doi: 10.1016/j.aej.2023.08.007
    [8] D. Dutykh, T. Katsaounis, D. Mitsotakis, Finite volume methods for unidirectional dispersive wave models, Int. J. Numer. Meth. Fluids, 71 (2013), 717–736. https://doi.org/10.1002/fld.3681 doi: 10.1002/fld.3681
    [9] D. Dutykh, M. Chhay, F. Fedele, Geometric numerical schemes for the KdV equation, Comput. Math. Math. Phys., 53 (2013), 221–236. https://doi.org/10.1134/S0965542513020103 doi: 10.1134/S0965542513020103
    [10] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [11] Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
    [12] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [13] C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrödinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
    [14] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation, Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298 doi: 10.1016/j.rinp.2023.107298
    [15] S. Guo, A. Das, Cohomology and deformations of generalized Reynolds operators on Leibniz algebras, Rocky Mountain J. Math., 54 (2024), 161–178. https://doi.org/10.1216/rmj.2024.54.161 doi: 10.1216/rmj.2024.54.161
    [16] T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE Trans. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
    [17] K. J. Wang, F. Shi, J. H. Liu, J. Si, Application of the extended $F$-expansion method for solving the fractional Gardner equation with conformable fractional derivative, Fractals, 30 (2022), 2250139. https://doi.org/10.1142/S0218348X22501390 doi: 10.1142/S0218348X22501390
    [18] F. Wang, M. M. A. Khater, Computational simulation and nonlinear vibration motions of isolated waves localized in small part of space, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.03.009 doi: 10.1016/j.joes.2022.03.009
    [19] J. Liu, F. Wang, R. A. Attia, S. H. Alfalqi, J. F. Alzaidi, M. M. Khater, Innovative insights into wave phenomena: computational exploration of nonlinear complex fractional generalized-Zakharov system, Qual. Theory Dyn. Syst., 23 (2024), 170. https://doi.org/10.1007/s12346-024-01023-x doi: 10.1007/s12346-024-01023-x
    [20] H. Khan, Shoaib, D. Baleanu, P. Kumam, J. F. Al-Zaidy, Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. https://doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188
    [21] R. Qahiti, N. M. A. Alsafri, H. Zogan, A. A. Faqihi, Kink soliton solution of integrable Kairat-X equation via two integration algorithms, AIMS Math., 9 (2024), 30153–30173. https://doi.org/10.3934/math.20241456 doi: 10.3934/math.20241456
    [22] H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the $(\frac{G'}{G})$-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
    [23] H. Khan, R. Shah, J. F. Gómez-Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Phenom., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
    [24] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [25] L. Akinyemi, M. Şenol, O. S. Iyiola, Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method, Math. Comput. Simul., 182 (2021), 211–233. https://doi.org/10.1016/j.matcom.2020.10.017 doi: 10.1016/j.matcom.2020.10.017
    [26] E. Fan, Y. C. Hona, Generalized tanh method extended to special types of nonlinear equations, Z. Naturforsch. A, 57 (2002), 692–700. https://doi.org/10.1515/zna-2002-0809 doi: 10.1515/zna-2002-0809
    [27] S. Kaewta, S. Sirisubtawee, S. Koonprasert, S. Sungnul, Applications of the $(\frac{G'}{G^2})$-expansion method for solving certain nonlinear conformable evolution equations, Fractal Fract., 5 (2021), 88. https://doi.org/10.3390/fractalfract5030088 doi: 10.3390/fractalfract5030088
    [28] J. Hietarinta, Introduction to the Hirota bilinear method, In: Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Integrability of nonlinear systems, Lecture Notes in Physics, Berlin: Springer, 495 (1997), 95–103. https://doi.org/10.1007/BFb0113694
    [29] M. A. Akbar, L. Akinyemi, S. W. Yao, A. Jhangeer, H. Rezazadeh, M. M. Khater, et al., Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method, Results Phys., 25 (2021), 104228. https://doi.org/10.1016/j.rinp.2021.104228 doi: 10.1016/j.rinp.2021.104228
    [30] S. Dai, Poincare-Lighthill-Kuo method and symbolic computation, Appl. Math. Mech., 22 (2001), 261–269. https://doi.org/10.1007/BF02437964 doi: 10.1007/BF02437964
    [31] S. Akcagil, T. Aydemir, A new application of the unified method, New Trends Math. Sci., 6 (2018), 185–199. https://doi.org/10.20852/ntmsci.2018.261 doi: 10.20852/ntmsci.2018.261
    [32] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
    [33] I. Ullah, K. Shah, T. Abdeljawad, Study of traveling soliton and fronts phenomena in fractional Kolmogorov-Petrovskii-Piskunov equation, Phys. Scr., 99 (2024), 055259. https://doi.org/10.1088/1402-4896/ad3c7e doi: 10.1088/1402-4896/ad3c7e
    [34] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scr., 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [35] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [36] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. Shafee, R. Shah, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. https://doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
    [37] S. A. El-Tantawy, H. A. Alyousef, R. T. Matoog, R. Shah, On the optical soliton solutions to the fractional complex structured (1+1)-dimensional perturbed gerdjikov-ivanov equation, Phys. Scr., 99 (2024), 035249. https://doi.org/10.1088/1402-4896/ad241b doi: 10.1088/1402-4896/ad241b
    [38] M. A. Abdou, A generalized auxiliary equation method and its applications, Nonlinear Dyn., 52 (2008), 95–102. https://doi.org/10.1007/s11071-007-9261-y doi: 10.1007/s11071-007-9261-y
    [39] A. J. M. Jawad, M. D. Petkovi, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869–877. https://doi.org/10.1016/j.amc.2010.06.030 doi: 10.1016/j.amc.2010.06.030
    [40] W. Hamali, H. Zogan, A. A. Altherwi, Dark and bright hump solitons in the realm of the quintic Benney-Lin equation governing a liquid film, AIMS Math., 9 (2024), 29167–29196. https://doi.org/10.3934/math.20241414 doi: 10.3934/math.20241414
    [41] T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. A, 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
    [42] V. E. Zakharov, E. A. Kuznetsov, Three-dimensional solitons, Zh. Eksp. Teor. Fiz., 66 (1974), 594–597.
    [43] A. M. Wazwaz, Compact and noncompact physical structures for the ZK-BM equation, Appl. Math. Comput., 169 (2005), 713–725. https://doi.org/10.1016/j.amc.2004.09.062 doi: 10.1016/j.amc.2004.09.062
    [44] A. M. Wazwaz, The tanh method and the sine-osine method for solving the KP-MEW equation, Int. J. Comput. Math., 82 (2005), 235–246. https://doi.org/10.1080/00207160412331296706 doi: 10.1080/00207160412331296706
    [45] K. Khan, M. A. Akbar, N. H. M. Ali, The modified simple equation method for exact and solitary wave solutions of nonlinear evolution equation: the GZK-BBM equation and right-handed noncommutative Burgers equations, Int. Scholarly Res. Not., 2013 (2013), 146704. https://doi.org/10.1155/2013/146704 doi: 10.1155/2013/146704
    [46] \"O. Güner, A. Bekir, L. Moraru, A. Biswas, Bright and dark soliton solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation, Proc. Rom. Acad. Ser. A, 16 (2015), 422–429.
    [47] Z. Navickas, R. Marcinkevicius, I. Telksniene, T. Telksnys, M. Ragulskis, Structural stability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes, Math. Comput. Model. Dyn. Syst., 30 (2024), 51–72. https://doi.org/10.1080/13873954.2024.2304808 doi: 10.1080/13873954.2024.2304808
    [48] Y. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable kairat-Ⅱ and kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(795) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog