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Abstract: This investigation offers an innovative analytical strategy, namely the Riccati modified
extended simple equation method (RMESEM), to establish and analyze soliton results of the (2+1)-
dimensional dynamical generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation (GZK-
BBME) in plasma physics. This equation models the physical phenomena of long waves with small
and finite amplitude in magnetic plasma. Using a wave transformation, the employed transformative
technique first converts GZK-BBME to a nonlinear ordinary differential equation (NODE). With the
incorporation of the Riccati equation, a close-form solution is then assumed for the resultant NODE
by RMESEM, which converts the NODE into a set of algebraic equations. The fresh plethora of
soliton results in the form of rational, exponential, rational-hyperbolic and periodic functional cases
are obtained by addressing this set of equations. Several contour, 3D, and 2D graphs are also employed
to visualizes the dynamics of these constructed soliton results. These graphs demonstrate that the
acquired solitons adopts the type of diverse kink solitons, including cuspon, dark, bright, lump-type,
and dark-bright kinks. In addition, our proposed RMESEM shows the applications of the model by
producing different traveling soliton results, providing qualitative information on the GZK-BBMEs
and possible applications in dealing with other similar kinds of non-linear models.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are crucial due to their ability to decode a wide-
ranging of phenomena, as well as wave bending, fluid mechanics, hydrodynamics, organic molecular
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dispersion, magnetism, thermal conductivity, and many more. These phenomena are found across
multiple scientific areas, such as mathematics, physics, engineering, biology, and finance. The broad
range of NLPDEs is shown by a variety of equations, such as the Higgs system, advection equation,
Boussinesq equation, Fisher’s equation, and Burger’s equation, among others [1–5].

Several asymptotic methods have been proposed in other studies to explore the internal dynamic
behaviors of nonlinear partial differential equations (NPDEs) and fractional NPDEs with investigations
on propagating solitons and other travelling wave solutions [6–10]. A soliton is an auto-oscillating
wave-packet that preserves both its shape and speed during its propagation due to the fine-tuning
between dispersion and nonlinearity. Kink waves, shock waves, lump waves, damped waves,
periodic waves, etc are a few examples of solitons are present, which are described by soliton
theory [11–13]. Despite the abundant availability of numerical solutions, analysts often resort to
analytical methods because of the ability to explain the flow of physics and the accuracy of estimate
of the behaviors of the system [14–16]. As a result, work on developing analytical treatments
to investigate the solitonic behavior of NPDEs and fractional NPDEs is still ongoing, and several
analytical methods have been created to investigate soliton solutions. F-expansion technique [17],
sech-tanh technique [18], Sardar sub-equation technique [19], (G′/G)-expansion technique [20–23],
exp-function technique [24], sub-equation technique [25], tanh technique [26], (G′/G2)-expansion
technique [27], Hirota bilinear technique [28], Kudryashov technique [29], Poincaré-Lighthill Kuo
approach [30], unified technique [31], Riccati-Bernoulli Sub-ODE technique [32], extended direct
algebraic technique [33–37], auxiliary equation method [38], simple equation method [39], and
RMESEM [40] are a few of these methods.

To discover cases of propagating solitons and other traveling waves, results for NPDEs and
NFPDEs, this work establishes a new modification in a novel analytical technique called RMESEM
with extended Riccati equation. This approach uses a variable-form wave transformation to transform
the NPDE or NFPDE into an integer-order NODE. The resulting NODE is considered to have a series-
based result (incorporating the solution of the Riccati equation). The substitution of the supposed
solution in the resultant NODE transforms it into a set of algebraic equations. The soliton solutions for
the relevant NPDEs and NFPDEs are acquired by more thoroughly finding the solutions of algebraic
equations. The families of soliton solutions produced by RMESEM with the extended Riccati equation
can help us comprehend the fundamental physical mechanisms and behavioral patterns of the nonlinear
system.

To showcase the effectiveness of the improved RMESEM, the method is utilized to acquire soliton
solutions for the (2+1)-dimensional GZK-BBME. In 1972, Benjamin et al. [41] investigated the issue
of long waves with small and finite amplitudes and put out the Benjamin-Bona-Mahony equation
(BBME), which took the following form:

vt + αvx + βvvx − γvtxx = 0. (1.1)

To study weakly nonlinear ion-acoustic oscillations in low-pressure magnetized plasma, Zakharov
and Kuznetsov [42] extended the Korteweg-de Vries (KdV) equation, resulting in the formulation of
the Zakharov-Kuznetsov equation (ZKE) as:

vt + αvvx + (vxx + vyy + vzz)x = 0, (1.2)

where v denotes ion velocity with the magnetic fields and is non-dimensional. Wazwaz [43] merged
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the ZKE and BBME equations in 2005 to create the (2+1) dimensional GZK-BBM equation [40]:

vt + vx + α(vδ)x + β(vxt + vyy)x = 0, δ > 1, (1.3)

where v = v(t, x, y), the coefficients α and β are the relative dispersion and nonlinear parameters
respectively, and x and y are the propagating & transverse coordinates. The nonlinear influence is
introduced into the equation by the term (vδ)x. This formula is applied to the ZK-model analysis of long
waves with finite amplitude. This equation’s odd-order derivatives, vxxt and vyyx, take the dispersion
effect into account. Examining the way the nonlinear and dispersion effects interact with the problem is
one goal of the generalized GZK-BBME investigation. For instance, the tanh and sine-cosine approach
was used to solve (3) [44]. By using a modified simple equation approach, Khan et al. [45] were able
to get solitary wave solutions to the GZK-BBME for n = 3. In 2015, Guner et al. [46] revealed the
dark and bright soliton solution of the GZK-BBME. Finally, Patel and Kumar acquired numerical and
semi-analytical solutions for GZK-BBME for n = 2 and n = 3 by the Adomian decomposition method
and the variational iteration method, respectively, under some initial conditions [40]. The remaining
task of the present analysis is to constructs and examine the propagation of the solitons in the context
of GZK-BBME for n = 3 articulated in (2.1).

The rest of the study is structured as follows: In Section 2, we detail the working process of
RMESEM. Following this approach, we develop soliton solutions for the GZK-BBME in Section 3.
The depictions and graphical discussion are presented in Section 4. Lastly, Section 5 provides the
conclusion in our research proposal.

2. The operational methodology of RMESEM

This section outlines the operational mechanism of RMESEM for constructing soliton solutions for
NPDEs. Suppose the following general NPDE:

P(v, vt, vx, vy, vvt, . . .) = 0, (2.1)

where v = v(t, x, y) is an unknown function, P is the polynomial of v(t, x, y), while the subscripts signify
partial derivatives.

The main steps of the proposed RMESEM are as follows:

Step 1. Take into consideration the ensuing wave transformation

v(t, x, y) = V(ζ), where ζ = x + y − ωt, (2.2)

where ω denotes wave speed. Equation (2.1) is converted into the following NODE using the above
wave transformation:

Q(V,V ′V,V ′, . . . ) = 0, (2.3)

where the primes indicate the ordinary derivatives of V with respect to ζ, and Q is a polynomial of V
and its derivatives.

Step 2. Equation (2.3) is sometimes integrated term by term to be made conformable for the
homogeneous balancing rule.
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Step 3. Following that, we suppose that a closed-form wave solution for Eq (2.3) can be expressed in
the ensuing form:

V(ζ) =

γ∑
j=0

k j

(
Φ′(ζ)
Φ(ζ)

) j

+

γ−1∑
ε=0

sε

(
Φ′(ζ)
Φ(ζ)

)ε
·

(
1

Φ(ζ)

)
, (2.4)

where k j( j = 0, ..., γ) and sε(ε = 0, ..., γ−1) represent the unknown constants that need to be determined
later and Φ(ζ) satisfies the subsequent 1st order Riccati equation:

Φ′(ζ) = p + qΦ(ζ) + r(Φ(ζ))2, (2.5)

where p, q and r are constants.

Step 4. To calculate the integer γ presented in Eq (2.4), we take the homogeneous balance between the
highest nonlinear term and the highest-order derivative term in Eq (2.3).

Step 5. Substituting the value of γ got in step 4 into Eq (2.4) and substituting the result together
with Φ(ζ) raised to the exponent equal to the index of the integral on the left-hand side of Eq (2.3)
or substituting the result with Φ(ζ) when we have integrated Eq (2.3) gives an expression in terms of
Φ(ζ). New additional construction by comparison of coefficient expression gives a system of algebraic
equations of k j( j = 0, ..., γ) and sε(ε = 0, ..., γ−1) with other associated parameters that are introduced.

Step 6. Solving the algebraic system obtained in Step 5 with the help of algebraic software Maple
yields values of k j( j = 0, ..., γ) and sε(ε = 0, ..., γ − 1) with additional associated parameters.

Step 7. Finally, soliton solutions to Eq (2.1) are derived by determining and substituting the calculated
values of parameters in Eq (2.4) with the solutions of Eq (2.5) that are given in Table 1.

3. Execution of RMESEM

This section employs the proposed RMESEM for the establishment of new plethora of soliton
solutions for GZK-BBME with δ = 3 of the form:

vt + vx + α(v3)x + β(vxt + vyy)x = 0. (3.1)

We proceed by performing the wave transformation given in Eq (2.2), which transforms Eq (3.1) into
the ensuing NODE:

− ωV ′ + V ′ + α(V3)′ + β(−ωV ′′ + V ′′)′ = 0. (3.2)

Upon integrating Eq (3.2) with zero constant of integration, we obtain the following NODE:

(1 − ω)V + αV3 + (1 − ω)βV ′′. (3.3)

Establishing the principle of homogenous balance between terms V ′′ and V3 in Eq (3.3) suggests that
2+γ = 3γ which applies γ = 1. Substituting γ = 1 in Eq (2.4) presents the series form closed solutions
for Eq (3.3):

V(ζ) =

1∑
j=0

k j

(
Φ′(ζ)
Φ(ζ)

) j

+

(
s0

Φ(ζ)

)
. (3.4)
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Table 1. The solutions Φ(ζ) that meet the particular Riccati equation in (2.4) and the structure

of
(

Φ′(ζ)
Φ(ζ)

)
, where κ = q2 − 4rp and ℘ = cosh

(
1
4

√
κζ

)
sinh

(
1
4

√
κζ

)
.

S. No. Family Condition(s) Φ(ζ)
(

Φ′(ζ)
Φ(ζ)

)
1 Trigonometric

Solutions
κ < 0, r , 0

−
q
2r +

√
−κ tan( 1

2
√
−κζ)

2r , − 1
2

κ
(
1+(tan( 1

2
√
−κζ))2

)
−q+

√
−κ tan( 1

2
√
−κζ) ,

−
q
2r −

√
−κ cot( 1

2
√
−κζ)

2r , 1
2

(
1+(cot( 1

2
√
−κζ))2

)
κ

q+
√
−κ cot( 1

2
√
−κζ) ,

−
q
2r +

√
−κ(tan(√−κζ)+(sec(√−κζ)))

2r , −
κ (1+sin(√−κζ)) sec(√−κζ)

−q cos(√−κζ)+
√
−κ sin(√−κζ)+

√
−κ

,

−
q
2r +

√
−κ(tan(√−κζ)−(sec(√−κζ)))

2r . κ (sin(√−κζ)−1) sec(√−κζ)
−q cos(√−κζ)+

√
−κ sin(√−κζ)−√−κ .

2 Rational
Solutions κ = 0 −2 p(qζ +2)

q2ζ
, −2 1

ζ (qζ+2) ,
κ = 0, & q = r = 0 ζ p, 1

ζ
,

κ = 0, & q = p = 0 − 1
ζ r . − 1

ζ
.

3 Hyperbolic
Solutions

κ > 0, r , 0

−
q
2r −

√
κ tanh( 1

2
√
κζ)

2r , − 1
2

(
−1+(tanh( 1

2
√
κζ))2

)
κ

q+
√
κ tanh( 1

2
√
κζ) ,

−
q
2r −

√
κ(tanh(√κζ)+i(sech(√κζ)))

2r , −
κ (−1+i sinh(√κζ))

cosh(√κζ)(q cosh(√κζ)+
√
κ sinh(√κζ)+i

√
κ) ,

−
q
2r −

√
κ(tanh(√κζ)−i(sech(√κζ)))

2r , −
κ (1+i sinh(√κζ))

cosh(√κζ)(−q cosh(√κζ)−√κ sinh(√κζ)+i
√
κ) ,

−
q
2r −

√
κ(coth(√κζ)+(csch(√κζ)))

2r . − 1
4

κ
(
2 (cosh( 1

4
√
κζ))2

−1
)

℘(−2 q℘+
√
κ) .

4 Rational-
Hyperbolic
Solutions

p = 0, & q , 0, r , 0 − λ b
r(cosh(bζ)−sinh(bζ)+λ) , q(sinh(qζ)−cosh(qζ))

− cosh(qζ)+sinh(qζ)−λ ,
−

b(cosh(bζ)+sinh(bζ))
r(cosh(bζ)+sinh(bζ)+µ) . qµ

cosh(qζ)+sinh(qζ)+µ .

5 Exponential
Solutions r = 0, & q = Υ, p = hΥ eΥ ζ − h, Υ eΥ ζ

eΥ ζ−h ,
p = 0, & q = Υ, r = hΥ eΥ ζ

1−heΥζ . − Υ

−1+heΥ ζ .

An expression in Φ(ζ) is generated by entering Eq (3.4) into Eq (3.3) and gathering all terms with
the equal exponents of Φ(ζ). The achieved expressions can be reduced to the ensuing scheme of seven
nonlinear algebraic equations by putting the coefficients to zero:

2 β k1r3 − 2 βω k1r3 + α k1
3r3 = 0,

3α k1
3qr2 − 3 βω k1qr2 + 3α k0k1

2r2 + 3 β k1qr2 = 0,

− 2 βω k1r2 p + 2 β k1r2 p + 3α k0
2k1r − βω k1q2r + 3α k1

3 pr2

− ω k1r + k1r + 3α k1
3q2r + 6α k0k1

2qr + β k1q2r + 3α k1
2r2s0 = 0,

6α k1
3 pqr + α k0

3 + 2 β k1qpr + 6α k0k1rs0 + k1q − ω k1q + 6α k0k1
2 pr + 3α k0

2k1q

+ 6α k1
2qrs0 + k0 + β s0qr − βω s0qr + α k1

3q3 + 3α k0k1
2q2 − ω k0 − 2 βω k1qpr = 0,
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− ω s0 + β s0q2 + 6α k1
2 prs0 + 6α k0k1

2 pq + 3α k1
3 p2r − ω k1 p + k1 p + 3α k0

2s0

− 2 βω k1rp2 + s0 − 2 βω s0 pr + 6α k0k1qs0 + 3α k0
2k1 p + 2 β s0 pr + β k1q2 p

+ 3α k1rs0
2 + 3α k1

3 pq2 − βω s0q2 + 3α k1
2q2s0 + 2 β k1rp2 − βω k1q2 p = 0,

3α k1
3 p2q + 3 β s0 pq + 3α k1qs0

2 − 3 βω s0 pq + 6α k0k1 ps0

− 3 βω k1qp2 + 6α k1
2 pqs0 + 3α k0k1

2 p2 + 3 β k1qp2 + 3α k0s0
2 = 0,

and

−2 βω s0 p2 + α k1
3 p3 + 3α k1

2 p2s0 + α s0
3 − 2 βω k1 p3 + 2 β s0 p2 + 3α k1 ps0

2 + 2 β k1 p3 = 0.

When tackling the result scheme with Maple, the followings three sorts of results become available:

Case 1.

k1 = 0, s0 = s0, k0 =
1
2

s0q
p
, β =

2
κ
, α = 4

p2 (ω − 1)
κ s0

2 , ω = ω. (3.5)

Case 2.

k1 = k1, s0 = s0, k0 = k0, β = β, α = 0, ω = 1. (3.6)

Case 3.

k1 = k1, s0 = −k1 p, k0 = −
1
2

k1q, β =
2
κ
, α = 4

ω − 1
κ k1

2 , ω = ω. (3.7)

When Case 1 is assumed and Eqs (2.2) and (3.4), together with the consistent general result of Eq (2.5)
given in Table 1. The following cases of soliton results for GZK-BBME expressed in Eq (3.1) result:

Set. 1.1. With κ < 0, r , 0,

v1,1(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r

+
1
2

√
−κ tan

(
1
2

√
−κζ

)
r


−1

, (3.8)

v1,2(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r
−

1
2

√
−κ cot

(
1
2

√
−κζ

)
r


−1

, (3.9)

v1,3(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r

+
1
2

√
−κ

(
tan

(√
−κζ

)
+ sec

(√
−κζ

))
r


−1

, (3.10)

and

v1,4(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r

+
1
2

√
−κ

(
tan

(√
−κζ

)
− sec

(√
−κζ

))
r


−1

. (3.11)
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Set. 1.2. With κ > 0, r , 0,

v1,5(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r
−

1
2

√
κ tanh

(
1
2

√
κζ

)
r


−1

, (3.12)

v1,6(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r
−

1
2

√
κ
(
tanh

(√
κζ

)
+ isech

(√
κζ

))
r


−1

, (3.13)

v1,7(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r
−

1
2

√
κ
(
tanh

(√
κζ

)
− isech

(√
κζ

))
r


−1

, (3.14)

and

v1,8(x, y, t) =
1
2

s0q
p

+ s0

−1
2

q
r
−

1
4

√
κ
(
tanh

(
1
4

√
κζ

)
− coth

(
1
4

√
κζ

))
r


−1

. (3.15)

Set. 1.3. With q = Υ, p = hΥ(h , 0) and r = 0,

v1,9(x, y, t) =
1
2

s0

h
+

s0

eΥ ζ − h
. (3.16)

In above solutions ζ = x + y − ωt.
When Case 2 is assumed and Eqs (2.2) and (3.4) together with the consistent general result of

Eq (2.5) given in Table 1. The following cases of soliton results for GZK-BBME expressed in Eq (3.1)
result:

Set. 2.1. With κ < 0, r , 0,

v2,1(x, y, t) = k0 −
1
2

k1κ
(
1 +

(
tan

(
1
2

√
−κζ

))2
)

−q +
√
−κ tan

(
1
2

√
−κζ

) + s0

−1
2

q
r

+
1
2

√
−κ tan

(
1
2

√
−κζ

)
r


−1

, (3.17)

v2,2(x, y, t) = k0 +
1
2

k1κ
(
1 +

(
cot

(
1
2

√
−κζ

))2
)

q +
√
−κ cot

(
1
2

√
−κζ

) + s0

−1
2

q
r
−

1
2

√
−κ cot

(
1
2

√
−κζ

)
r


−1

, (3.18)

v2,3(x, y, t) =k0 −
k1κ

(
1 + sin

(√
−κζ

))
cos

(√
−κζ

) (
−q cos

(√
−κζ

)
+
√
−κ sin

(√
−κζ

)
+
√
−κ

)
+ s0

−1
2

q
r

+
1
2

√
−κ

(
tan

(√
−κζ

)
+ sec

(√
−κζ

))
r


−1

+ k0,

(3.19)

and

v2,4(x, y, t) =
k1κ

(
sin

(√
−κζ

)
− 1

)
cos

(√
−κζ

) (
−q cos

(√
−κζ

)
+
√
−κ sin

(√
−κζ

)
−
√
−κ

)
+ s0

−1
2

q
r

+
1
2

√
−κ

(
tan

(√
−κζ

)
− sec

(√
−κζ

))
r


−1

+ k0.

(3.20)
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Set. 2.2. With κ > 0, r , 0,

v2,5(x, y, t) = k0 −
1
2

k1κ
(
−1 +

(
tanh

(
1/2
√
κζ

))2
)

q +
√
κ tanh

(
1
2

√
κζ

) + s0

−1
2

q
r
−

1
2

√
κ tanh

(
1
2

√
κζ

)
r


−1

, (3.21)

v2,6(x, y, t) = −
k1κ

(
−1 + i sinh

(√
κζ

))
cosh

(√
κζ

) (
q cosh

(√
κζ

)
+
√
κ sinh

(√
κζ

)
+ i
√
κ
)

+ s0

−1
2

q
r
−

1
2

√
κ
(
tanh

(√
κζ

)
+ isech

(√
κζ

))
r


−1

+ k0,

(3.22)

v2,7(x, y, t) = −
k1κ

(
1 + i sinh

(√
κζ

))
cosh

(√
κζ

) (
−q cosh

(√
κζ

)
−
√
κ sinh

(√
κζ

)
+ i
√
κ
)

+ s0

−1
2

q
r
−

1
2

√
κ
(
tanh

(√
κζ

)
− isech

(√
κζ

))
r


−1

+ k0,

(3.23)

and

v2,8(x, y, t) = −
1
4

k1κ
(
2

(
cosh

(
1
4

√
κζ

))2
− 1

)
cosh

(
1
4

√
κζ

)
sinh

(
1
4

√
κζ

) (
−2 q cosh

(
1
4

√
κζ

)
sinh

(
1
4

√
κζ

)
+
√
κ
)

+ s0

−1
2

q
r
−

1
4

√
κ
(
tanh

(
1
4

√
κζ

)
− coth

(
1
4

√
κζ

))
r


−1

+ k0.

(3.24)

Set. 2.3. With κ = 0, q , 0,

v2,9(x, y, t) = k0 − 2
k1

ζ (qζ + 2)
−

1
2

s0q2ζ

p (qζ + 2)
. (3.25)

Set. 2.4. With κ = 0, in case when q = r = 0,

v2,10(x, y, t) = k0 +
k1

ζ
+

s0

pζ
. (3.26)

Set. 2.5. With κ = 0, in case when q = p = 0,

v2,11(x, y, t) = k0 −
k1

ζ
− s0rζ. (3.27)

Set. 2.6. With q = Υ, p = hΥ(h , 0) and r = 0,

v2,12(x, y, t) = k0 +
k1Υ eΥ ζ

eΥ ζ − h
+

s0

eΥ ζ − h
. (3.28)
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Set. 2.7. With q = Υ, r = hΥ(h , 0) and p = 0,

v2,13(x, y, t) = k0 −
k1Υ

−1 + heΥ ζ
+

s0

(
1 − heΥ ζ

)
eΥ ζ

. (3.29)

Set. 2.8. With p = 0, r , 0 and q , 0,

v2,14(x, y, t) = k0 +
k1q (sinh (qζ) − cosh (qζ))
− cosh (qζ) + sinh (qζ) − λ

−
s0r (cosh (qζ) − sinh (qζ) + λ)

λ q
, (3.30)

and

v2,15(x, y, t) = k0 +
k1qµ

cosh (qζ) + sinh (qζ) + µ
−

s0r (cosh (qζ) + sinh (qζ) + µ)
q (cosh (qζ) + sinh (qζ))

. (3.31)

In above solutions ζ = x + y − t.
When Case 3 is assumed and Eqs (2.2) and (3.4) together with the consistent general result of

Eq (2.5) given in Table 1. The following cases of soliton results for GZK-BBME expressed in Eq (3.1)
result:

Set. 3.1. With κ < 0, r , 0,

v3,1(x, y, t) = −
1
2

k1q −
1
2

k1κ
(
1 +

(
tan

(
1
2

√
−κζ

))2
)

−q +
√
−κ tan

(
1
2

√
−κζ

) − k1 p

−1
2

q
r

+
1
2

√
−κ tan

(
1
2

√
−κζ

)
r


−1

, (3.32)

v3,2(x, y, t) = −
1
2

k1q +
1
2

k1κ
(
1 +

(
cot

(
1
2

√
−κζ

))2
)

q +
√
−κ cot

(
1
2

√
−κζ

) − k1 p

−1
2

q
r
−

1
2

√
−κ cot

(
1
2

√
−κζ

)
r


−1

, (3.33)

v3,3(x, y, t) = −
k1κ

(
1 + sin

(√
−κζ

))
cos

(√
−κζ

) (
−q cos

(√
−κζ

)
+
√
−κ sin

(√
−κζ

)
+
√
−κ

)
− k1 p

−1
2

q
r

+
1
2

√
−κ

(
tan

(√
−κζ

)
+ sec

(√
−κζ

))
r


−1

−
1
2

k1q,

(3.34)

and

v3,4(x, y, t) =
k1κ

(
sin

(√
−κζ

)
− 1

)
cos

(√
−κζ

) (
−q cos

(√
−κζ

)
+
√
−κ sin

(√
−κζ

)
−
√
−κ

)
− k1 p

−1
2

q
r

+
1
2

√
−κ

(
tan

(√
−κζ

)
− sec

(√
−κζ

))
r


−1

−
1
2

k1q.

(3.35)

Set. 3.2. With κ > 0, r , 0,

v3,5(x, y, t) = −
1
2

k1q −
1
2

k1κ
(
−1 +

(
tanh

(
1
2

√
κζ

))2
)

q +
√
κ tanh

(
1
2

√
κζ

) − k1 p

−1
2

q
r
−

1
2

√
κ tanh

(
1
2

√
κζ

)
r


−1

, (3.36)
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v3,6(x, y, t) = −
k1κ

(
−1 + i sinh

(√
κζ

))
cosh

(√
κζ

) (
q cosh

(√
κζ

)
+
√
κ sinh

(√
κζ

)
+ i
√
κ
)

− k1 p

−1
2

q
r
−

1
2

√
κ
(
tanh

(√
κζ

)
+ isech

(√
κζ

))
r


−1

−
1
2

k1q,

(3.37)

v3,7(x, y, t) = −
k1κ

(
1 + i sinh

(√
κζ

))
cosh

(√
κζ

) (
−q cosh

(√
κζ

)
−
√
κ sinh

(√
κζ

)
+ i
√
κ
)

− k1 p

−1
2

q
r
−

1
2

√
κ
(
tanh

(√
κζ

)
− isech

(√
κζ

))
r


−1

−
1
2

k1q,

(3.38)

and

v3,8(x, y, t) = −
1
4

k1κ
(
2

(
cosh

(
1
4

√
κζ

))2
− 1

)
cosh

(
1
4

√
κζ

)
sinh

(
1
4

√
κζ

) (
−2 q cosh

(
1
4

√
κζ

)
sinh

(
1
4

√
κζ

)
+
√
κ
)

− k1 p

−1
2

q
r
−

1
4

√
κ
(
tanh

(
1
4

√
κζ

)
− coth

(
1
4

√
κζ

))
r


−1

−
1
2

k1q.

(3.39)

Set. 3.3. With q = Υ, p = hΥ(h , 0) and r = 0,

v3,9(x, y, t) = −
1
2

k1Υ +
k1Υ eΥ ζ

eΥ ζ − h
−

k1hΥ

eΥ ζ − h
. (3.40)

Set. 3.4. With q = Υ, r = hΥ(h , 0) and p = 0,

v3,10(x, y, t) = −
1
2

k1Υ −
k1Υ

−1 + heΥ ζ
. (3.41)

Set. 3.5. With p = 0, r , 0 and q , 0,

v3,11(x, y, t) = −
1
2

k1q +
k1q (sinh (qζ) − cosh (qζ))
− cosh (qζ) + sinh (qζ) − λ

, (3.42)

and

v3,12(x, y, t) = −
1
2

k1q +
k1qµ

cosh (qζ) + sinh (qζ) + µ
. (3.43)

In above solutions ζ = x + y − ωt.

4. Graphical discussion

We present depictions for the numerous wave forms found in the framework pursuant to assessment
in this part of the paper. We compiled and graphically displayed waves such as dark solitary, bright,
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dark-bright, lump-like, dark, anti, and cuspon kinks in 2D, 3D, and contour modes through RMESEM.
The results obtained are essential for interpreting the manner in which attributed physical phenomena
operate. The objectives of the produced soliton solutions are to significantly expand our comprehension
with regard to the theory of long waves with finite amplitude and the related field. Additionally, it has
been graphically demonstrated that the solitons in the context of GZK-BBME take the shapes of kink
solitons prominently.

Peculiar wave solutions in NPDEs with a supple, resilient, confined transition across the two
asymptotic shifts are known as kink solitons. Such waves are seen in some NPDEs, including the
GZK-BBME, which models wave propagation in a range of physical systems, including fluids and
plasma.

Kink solitons are put into many groups according to the characteristics they exhibit, such as dark,
lump-like, cuspon kink, dark-kink, grey kink, and dark-bright kink solitons. In contrast, bright kinks
are concentrated, steady wave packets with an energy peak or accumulation that maintains its peak
shape and dimension through transmission. Dark-bright kink solitons bring together the properties
of both dark wave and bright kinks. Lump-like kinks display locally lump-shaped forms; during
propagation, they can alter structure or orientation. Erratic, cusp-type field discontinuities separate
cuspon kinks from smoother solitons. Lastly, A grey kink, which produces a waveform with a
steeper amplification plunge compared to a black kink, is referred to as a confined, uniform transition
with a non-zero deviance distinguishing two hyperbole phases. Being that they preserve their initial
configuration as they propagate through the GZK-BBME, kink solitons are important for studying
long-wave dispersal amplitude that is finite. Kink solitons persistence occurrence in a variety of media,
such as water, provides insight into wave conduct, surf-to-wave interaction, and patterning integrity
throughout time and space. Because kink solitons are stable, confined waves that transmit without
altering form, they are useful for explaining fluid dynamics, nonlinear wave theory, and plasma physics
scenarios. In particular, kink solitons may be used to describe ion-acoustic waveforms in polarized
plasmas in plasma physics. Shallow waves of water influenced by both dispersive and nonlinear factors
are described by them in fluid dynamics. Furthermore, they are perfect for researching the transmission
of energy and communication in nonlinear optical systems and other dispersive media controlled by
comparable dynamical equations due to their stability and durability. As demonstrated in this study,
these applications highlight the significance of investigating their many forms and behaviors. This
information is essential for describing & predicting wave motion in dynamics of fluids, plasma physics,
and related purposes.

Remark 1: Figure 1 is plotted for v1,6 given in (3.13), which displays an anti-kink soliton profile.

Remark 2: Figure 2 is plotted for v1,9 given in (3.16), which displays an anti-kink soliton profile.

Remark 3: Figure 3 is plotted for v2,5 given in (3.21), which displays an anti-kink soliton profile.

Remark 4: Figure 4 is plotted for v2,8 given in (3.24), the profile shows a bright kink soliton.

Remark 5: Figure 5 is plotted for v2,9 given in (3.25), the profile shows a lump-like kink soliton.

Remark 6: Figure 6 is plotted for v2,10 given in (3.26), the profile shows a lump-like kink soliton.

Remark 7: Figure 7 is plotted for v2,12 given in (3.28), the profile shows a cuspon anti-kink soliton.

Remark 8: Figure 8 is plotted for v3,1 given in (3.32), the profile shows a bright-dark kink soliton.
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Remark 9: Figure 9 is plotted for v3,5 given in (3.36), the profile shows a grey kink soliton.

Remark 10: Figure 10 is plotted for v3,10 given in (3.41), the profile shows a solitary kink soliton.

Remark 11: Figure 11 is plotted for v3,12 given in (3.43), the profile shows a solitary kink soliton.

Figure 1. The real part of anti-kink soliton solution v1,6, as described in (3.13), is represented
in three dimension, with contours and in two dimension (y = −1) for the following values of
p := 1; q := 10; r := 8;ω := −20; s0 := 10; t := 2.

Figure 2. The anti-kink soliton solution v1,9, as described in (3.16), is represented in three
dimension, with contours and in two dimension (y = −100) for the following values of
p := 25; q := 5; h := 5; Υ := 5; r := 0;ω := −10; s0 := 30; t := 4.
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Figure 3. The anti-kink soliton solution v2,5, as described in (3.21), is represented in three
dimension, with contours and in two dimension (y = 0) for the following values of p :=
1; q := 5; r := 4;ω := 1; k0 := 1; k1 := 2; s0 := 5; t := 0.

Figure 4. The bright kink soliton solution (also known as a hump kink) v2,8, as described in
(3.24), is represented in three dimension, with contours and in two dimension (y = −1) for
the following values of p := 4; q := 10; r := 4;ω := 1; k0 := 3; k1 := 6; s0 := 15; t := 1.

Figure 5. The lump-type kink soliton solution v2,9, as described in (3.25), is represented in
three dimension, with contours and in two dimension (y = −50) for the following values of
p := 1; q := 2; r := 1;ω := 1; k0 := 4; k1 := 8; s0 := 20; t := 10.
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Figure 6. The lump-type kink soliton solution v2,10, as described in (3.26), is represented
in three dimension, with contours and in two dimension (y = 1) for the following values of
p := 15; q := 0; r := 0;ω := 1; k0 := 5; k1 := 10; s0 := 25; t := 20.

Figure 7. The cuspon anti-kink soliton solution v2,12, as described in (3.28), is represented
in three dimension, with contours and in two dimension (y = 50) for the following values of
p := 6; q := 3; h := 2; Υ := 3; r := 0;ω := 1; k0 := 10; k1 := 20; s0 := 50; t := 100.

Figure 8. The bright-dark kink soliton solution v3,1, as described in (3.32), is represented in
three dimension, with contours and in two dimension (y = 0.3) for the following values of
p := 6; q := 1; r := 5;ω := 10; k0 := 1; k1 := 5; s0 := 50; t := 50.
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Figure 9. The gray kink soliton solution v3,5, as described in (3.36), is represented in three
dimension, with contours and in two dimension (y = 1000) for the following values of p :=
4; q := 10; r := 4;ω := 20; k1 := 30; t := 100.

Figure 10. The solitary kink soliton solution v3,10, as described in (3.41), is represented in
three dimension, with contours and in two dimension (y = 45) for the following values of
p := 0; q := 10; r := 20; Υ := 10; h := 2;ω := 5; k1 := 10; t := 50.

Figure 11. The solitary kink soliton solution v3,12, as described in (3.43), is represented in
three dimension, with contours and in two dimension (y = 50) for the following values of
p := 0; q := 5; r := 5;ω := 1; k0 := 2; k1 := 3; s0 := 5; t := 20; µ := 5.
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5. Conclusions

The modernized RMESEM was established in this research to address a nonlinear model, namely
GZK-BBME. With the help of the Riccati equation, the RMESEM was capable of arriving at a close
form solution for the NODE that the model generated. The propagating soliton solutions that are
significant to the problem’s physical interpretation were subsequently obtained by shaping this solution
into a system of nonlinear algebraic equations. It was shown that different travelling solitons, including
dark-kink, lump-type, dark-bright, grey kink, and cuspon kink solitons, exist in kink soliton solutions
by presenting multiple 3D, 2D, and contour graphs. The research highlights the implications for
several practical applications in the linked fields of nonlinear GZK-BBME and demonstrates how the
RMESEM may be utilized to build arrays of soliton solutions for difficult problems, particularly plasma
physics and fluid dynamics. Thus, despite the fact that the analysis within the framework of the GZK-
BBME provides insight into soliton dynamics that relate to the models of interest, it is constructive to
also point out the drawbacks of using this method, especially when the largest derivative and nonlinear
term are not equivalent. However, this limitation does not detract from the present study since this
work clearly shows that the strategy used in this work is highly efficient, portable, and reliable for
nonlinear problems of various natural science disciplines.

Appendix

Some of the above mentioned analytical methods rely on the Riccati equation. These methods
are convenient to analyze soliton effects in nonlinear models since the equation of the Riccati type
possesses solitary solutions [47]. Based on these applications of the Riccati hypothesis, the current
study employed the Riccati equation comprising RMESEM [48] to generate and simulate soliton
dynamics in GZK-BBME. This addition was useful as it generated five new families of kink soliton
solutions for the targeted model: rational, hyperbolic, periodic, exponential and rational-hyperbolic.
From the solutions obtained, significant progress was made towards the understanding of soliton
behaviour and establishing a linkage between the events in the targeted model and the mentioned
theories. Limiting our method’s solutions results in some other strategies’ solutions. The analogy is
given in the part that follows:

Comparison with other analytical techniques

The outcomes of the other analytical techniques can be obtained using our procedure. As an
instance:

Axiom 6.1.1. The following develops after k1 = 0 is configured in (3.4):

V(ζ) = d0

(
1

Φ(ζ)

)
. (A.1)

This shows that the closed-type result is associated with EDAM. Thus, attaining k1 = 0, our solutions
can likewise lead to the results generated by EDAM.
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Axiom 6.1.2. Similarly, the following develops after s0 = 0 is configured in (3.4):

V(ζ) =

1∑
j=0

C j

(
Φ′(ζ)
Φ(ζ)

) j

, (A.2)

This is the closed form solution obtained is applying the Riccati equation in the (G′/G)-expansion
approach.

As a result, the results of our study might potentially provide a wider range of results generated by
the EDAM and (G′/G)-expansion techniques.
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